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Introduction to Multi-threaded
 Processor Verification



Development and Verification Needs
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With the surge of AI, multi- threading 

in computing has become crucial. It 

enhances performance but complicates 

verification, making system- level 

verification indispensable.

Traditional verification methods fail to 

meet modern demands due to the 

dynamic and uncertain nature of real- 

world applications.

Rapid Growth of AI and Chip 
Architectures

System- level verification generates 

realistic stimuli, covering all core 

pipeline modules. However, creating 

random and valid stimuli for multi- 

threaded processors is a significant 

challenge.

Engineers struggle with intricate 

interactions like memory access 

synchronization and avoiding infinite 

loops in random jumps.

Challenges in System-Level 
Verification

Efficient verification is vital for timely 

chip tapeout and reducing failure rates. 

It ensures that processors meet design 

specifications and perform reliably in 

various scenarios.

The proposed method aims to address 

these challenges by offering a versatile 

and highly random system- level 

verification approach.

Importance of Efficient Verification
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Contributions of the Proposed Method

Innovative Verification Framework

This paper introduces a system-level random stimulus 

generation framework using instruction-set modeling. 

Key innovations include modular API encapsulation for 

flexible instruction configuration and an automated 

multi-threaded conflict resolution mechanism to ensure 

reliability. The framework employs hierarchical 

constraints to balance randomness with legal instruction 

flow boundaries, enabling efficient and controlled test 

stimulus generation for processor verification.

Enhanced Debugging Support

A closed- loop debug support mechanism 

is established, integrating stimulus 

generation and debugging.

This significantly reduces debugging costs 

for complex instruction streams and 

improves defect localization efficiency.

Practicality and Effectiveness

Extensive experiments demonstrate the 

method's ability to uncover previously 

undetected design flaws.

It shows significant improvements in 

verification efficiency and comprehensive 

coverage of the instruction set architecture.



Methodology of the Verification 
Framework



Framework 
Overview

Instruction Set 
Abstraction Layer

Software 
Toolchain Layer

Instruction Stream 
Randomization 

Layer

Debugging 
Support 
Layer

The proposed framework consists of four layers: Software 

Toolchain Layer, Instruction Set Abstraction Layer, 

Instruction Stream Randomization Layer, and Debugging 

Support Layer.

This hierarchical structure ensures seamless integration of 

instruction generation, randomization, and debugging 

support.

Hierarchical Structure

The Software Toolchain Layer manages the entire process of  

instruction stream stimuli, from conversion to simulation 

verification.

The Instruction Set Abstraction Layer formalizes instruction 

semantics, enabling structured expression and randomization.

Collaboration of Layers

The Instruction Stream Randomization Layer encapsulates 

APIs for generating diverse instruction types and formats.

The Debugging Support Layer provides critical tools for 

tracing and diagnosing errors in complex instruction streams.

Key Components



Formalizing Instruction Semantics

The core objective of this layer is to formalize the 

semantics of the instruction set, providing 

manipulable variables for randomization.

It categorizes the ISA into clusters such as 

computational, control, memory, and system 

instructions, defining their opcodes, operand 

constraints, and special field parameters.

Dynamic Instruction Object Generation

The UVM factory pattern dynamically generates 

instruction objects based on the defined ISA 

specifications.

The VCS constraint solver ensures operand 

legality, avoiding issues like writes to reserved 

registers.

Assembly Instruction Generation

Instantiated instruction objects are converted into 

target assembly syntax using a stringification 

engine.

This process enables the generation of diverse and 

valid instruction streams for system- level 

verification.

Instruction Set Abstraction Layer



Instruction Stream Randomization Layer

 

Randomizing Individual Instructions
This layer aims to randomize individual instructions and construct instruction stream stimuli.
It encapsulates the instruction stream logic into multiple API functions, allowing customization of desired instruction types and 
formats.

Maintaining Instruction Stream Records
The framework maintains records of generated instruction streams, which is crucial for debugging and tracing errors.
This ensures that the verification process is traceable and any issues can be quickly identified and resolved.

 

 

API-Driven Instruction Generation
The APIs enable automated synchronization of memory access instructions and dynamic insertion of branch instructions.
They also simplify instruction mixing and type weighting, facilitating the generation of mixed instruction types for multi- 
threaded processors.



Software Toolchain Layer

Instruction Stream Management

This layer focuses on managing the conversion of 

instruction stream stimuli and the simulation process 

of simulators, ensuring smooth integration with the 

UVM environment.

It supports syntax parsing of Instruction Set 

Architecture (ISA) and converts the generated 

instruction stream into binary files for simulation.
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Integration with UVM Environment

The integrated software toolchain includes assembler and 

simulator interfaces, facilitating the conversion of 

instruction streams into binary format.

This seamless integration enables efficient verification of the 

Design Under Test (DUT) against specification expectations.

02

Golden Data Dump

The binary files generated from instruction streams serve as 

golden data for dynamic simulation.

This ensures that the DUT's behavior aligns with the expected 

specifications, enhancing the reliability of the verification process.
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Debugging Support Layer
Critical Debugging Tools

This layer provides essential tools for debugging 

complex instruction stream stimuli.

It includes mechanisms for identifying faulty 

threads and tracing back through the 

instruction stream to locate erroneous 

instructions.
Improving Debugging Efficiency

By leveraging recorded debug information, the 

debugging subsystem can quickly pinpoint the root 

cause of errors.

This significantly reduces the time and effort required 

for debugging, enhancing overall verification efficiency.

Visualizing Dependency Chains

The debugging support layer also visualizes dependency 

chains across threads, providing a clear understanding 

of the relationships between instructions.

This helps in diagnosing complex issues such as cache 

coherence problems and memory access conflicts.



API encapsulation and 
instruction flow constraints



This embedded API serves as the foundation for 

instruction generation in the instruction stream.

It provides users with interfaces for configuring 

instruction types, registers, and special instruction 

fields while balancing high reusability and 

randomness.

This API handles the insertion of branch/jump instructions.

It ensures that random jumps adhere to constraints such as 

legal jump ranges and avoiding jumps into synchronization 

regions.

This API specializes in generating load/store 

(memory access) instructions.

It internally models an address management 

and synchronization mechanism to avoid cache 

coherence issues in multi- threaded processors.

This API randomly inserts instructions into existing 

instruction streams.

It allows users to specify the number of instructions to 

insert, the starting position, and the instruction queue.

API Functions



• Instruction queue
• Register interface(vector register/scalar 

register/special register/immediate)
• Functional configuration args for special 

instructions
• Instruction comment
• Jump instruction target instruction 

label
• Atomic switch between instructions
• Interface fully configured check switch

API Interface

Atomic schematic diagram 



• Load/Store instruction queue
• Saved address register
• offset address
• exception insert switch

API Interface



• Instruction queue
• Instruction count
• Starting instruction stream 

index
• The maximum jump range for 

jump instructions

API Interface



• Instruction queue
• Instruction count
• Starting instruction stream index

API Interface



Instruction Stream Constraints
Hierarchical Constraint 
Mechanism

The API interfaces ensure instruction legality through a hierarchical 

constraint mechanism.

This includes mandatory constraints that serve as the baseline for 

legal instruction streams and user- configurable constraints for 

specific verification scenarios.

Examples of mandatory constraints include register number 

range constraints, instruction format alignment, and 

prevention of illegal instruction encoding.

These constraints ensure that the generated instruction streams 

strictly comply with the Instruction Set Architecture (ISA).

Examples of user- configurable constraints include address legality 

control, customizable jump range settings, and address exception 

trigger. These constraints allow users to tailor the instruction 

streams to meet specific verification requirements and test various 

edge cases.

The framework employs differentiated constraint strategies based on instruction 

types:

Calculational instructions: Constrained within the valid register range according to 

the ISA spec and avoiding contaminating reserved registers in the environment

Memory access instructions: In addition to the constraints of registers, it is also 

necessary to constrain the range of addresses and data synchronization between 

memory access instructions

Jump instructions: Strict control over jump ranges and protection of 

synchronization instructions and avoid jumping to illegal instruction segments.

Mandatory Constraints

User-Configurable Constraints Differentiated Constraint Strategies



Example Usage of APIs

01.

By combining these APIs, users can quickly construct 

an ISA- based random kernel.

For example, generating a kernel with 8 load/store 

instructions, 80 computational instructions, and 8 

branch instructions is fully randomized and automated.

When generating a kernel through APIs, users only need 

to configure the interfaces they care about. For 

unconfigured interfaces, parameters will be randomly 

assigned within the legal range, and the instruction 

stream sequence will also reflect the high randomness 

inherent in the APIs.

The use of APIs significantly simplifies the process of 

generating complex instruction streams. Users can define 

the scale and type of instructions they wish to randomize, 

leaving intricate details to the API's automated 

mechanisms

High flexibility

High randomness02.
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The closed-loop mechanism of debugging

This framework records the thread ID, global sequence 

number, operation type, and memory access address of 

memory access instructions during the instruction stream 

generation process.

This comprehensive memory access data record can 

accurately track and debug complex instruction streams.

The debugging mechanism implements a reverse tracing 

mechanism for multi-threaded memory operations.

After detecting data errors at a specific address, the script 

quickly extracts the spatiotemporal context of all relevant 

instructions, allowing for precise backtracking to the first 

erroneous memory operation.

This mechanism also visualizes the address data transfer 

chain across threads, providing a clear relationship 

between memory access instructions.

This helps diagnose complex issues such as cache 

consistency and memory access conflicts.

Debug data recording Reverse-Tracing Mechanism Visual memory access address 
delivery chain

Example of debugging 
memory access address：



Experimental Validation and 
Conclusion



Experimental Results

The random instruction streams constructed 

using APIs in the RIG environment uncovered 

60+ bugs in the project.

60% of bugs were detected within the first 

two months of the verification cycle, with the 

Device Under Test (DUT) stabilizing around 

the six- month mark.

Rapid Bug Detection

The API- generated random instruction streams 

identified 3 bugs that were undetectable by 

module- level verification or semi- directed single- 

instruction- type stimulus.

These bugs required a mix of instruction types and 

sufficient randomness to manifest, proving the 

effectiveness of the stochastic approach.

Identification of Undetected Bugs
Functional coverage data collected over two weeks of regression testing 

shows that:

All instructions defined in the ISA SPEC were triggered.

Every instruction exercised the full register set.

Memory addresses covered boundary conditions and hardware- specific 

special addresses.

Jump instructions spanned all legal boundary ranges.

This confirms that the randomness of API- generated stimulus 

comprehensively covers the ISA specification and critical architectural 

features.

Comprehensive Functional 
Coverage



Conclusion

Efficient Verification 
Framework

This paper presents an efficient system- 

level random verification framework for 

multi- threaded processors.

It integrates four layers: Software 

Toolchain Layer, Instruction Set 

Abstraction Layer, Instruction Stream 

Randomization Layer, and Debugging 

Support Layer.

Key Innovations

The framework features modular 

instruction- type combinations through 

embedded APIs and an automated multi- 

thread conflict resolution mechanism.

It also establishes a closed- loop debug 

support mechanism, significantly improving 

debugging efficiency and defect localization.

Future Work and Enhancements
Expanding Framework Capabilities
Future work includes expanding the framework's 

capabilities to support more complex instruction sets 

and processor architectures.

This will involve enhancing the API functions and 

constraint mechanisms to cover a broader range of 

verification scenarios.

Improving Debugging Tools
Further improvements to the debugging tools will 

focus on providing more detailed and intuitive 

error analysis.

This will help validation engineers quickly identify 

and resolve issues, further reducing verification 

cycles.

Enhancing Randomization Techniques
Continuous enhancement of randomization 

techniques will ensure comprehensive coverage 

of the instruction set architecture.

This will involve exploring new algorithms and 

methods to improve the randomness and 

effectiveness of instruction stream generation.

The framework demonstrates substantial 

improvements in multi- threaded instruction stream 

construction efficiency.

Users need only write 10+ lines of code to generate 

mixed stimulus streams containing 5,000–10,000 

instructions, reducing code volume by over 90% 

compared to manual methods.

Significant Code Reduction
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