

A System-Level Random Verification
Method for Multi-threaded
Processors
Speaker：Li Zhixian
Date: 2025.04.16

CATALOGUE

1. Introduction to Multi-threaded Processor
Verification

Methodology of the Verification
Framework

API Encapsulation for Instruction
Generation

2.

3. Experimental Validation and Conclusion
4.

Introduction to Multi-threaded
 Processor Verification

Development and Verification Needs

01

With the surge of AI, multi- threading

in computing has become crucial. It

enhances performance but complicates

verification, making system- level

verification indispensable.

Traditional verification methods fail to

meet modern demands due to the

dynamic and uncertain nature of real-

world applications.

Rapid Growth of AI and Chip
Architectures

System- level verification generates

realistic stimuli, covering all core

pipeline modules. However, creating

random and valid stimuli for multi-

threaded processors is a significant

challenge.

Engineers struggle with intricate

interactions like memory access

synchronization and avoiding infinite

loops in random jumps.

Challenges in System-Level
Verification

Efficient verification is vital for timely

chip tapeout and reducing failure rates.

It ensures that processors meet design

specifications and perform reliably in

various scenarios.

The proposed method aims to address

these challenges by offering a versatile

and highly random system- level

verification approach.

Importance of Efficient Verification

02 03

Contributions of the Proposed Method

Innovative Verification Framework

This paper introduces a system-level random stimulus

generation framework using instruction-set modeling.

Key innovations include modular API encapsulation for

flexible instruction configuration and an automated

multi-threaded conflict resolution mechanism to ensure

reliability. The framework employs hierarchical

constraints to balance randomness with legal instruction

flow boundaries, enabling efficient and controlled test

stimulus generation for processor verification.

Enhanced Debugging Support

A closed- loop debug support mechanism

is established, integrating stimulus

generation and debugging.

This significantly reduces debugging costs

for complex instruction streams and

improves defect localization efficiency.

Practicality and Effectiveness

Extensive experiments demonstrate the

method's ability to uncover previously

undetected design flaws.

It shows significant improvements in

verification efficiency and comprehensive

coverage of the instruction set architecture.

Methodology of the Verification
Framework

Framework
Overview

Instruction Set
Abstraction Layer

Software
Toolchain Layer

Instruction Stream
Randomization

Layer

Debugging
Support
Layer

The proposed framework consists of four layers: Software

Toolchain Layer, Instruction Set Abstraction Layer,

Instruction Stream Randomization Layer, and Debugging

Support Layer.

This hierarchical structure ensures seamless integration of

instruction generation, randomization, and debugging

support.

Hierarchical Structure

The Software Toolchain Layer manages the entire process of

instruction stream stimuli, from conversion to simulation

verification.

The Instruction Set Abstraction Layer formalizes instruction

semantics, enabling structured expression and randomization.

Collaboration of Layers

The Instruction Stream Randomization Layer encapsulates

APIs for generating diverse instruction types and formats.

The Debugging Support Layer provides critical tools for

tracing and diagnosing errors in complex instruction streams.

Key Components

Formalizing Instruction Semantics

The core objective of this layer is to formalize the

semantics of the instruction set, providing

manipulable variables for randomization.

It categorizes the ISA into clusters such as

computational, control, memory, and system

instructions, defining their opcodes, operand

constraints, and special field parameters.

Dynamic Instruction Object Generation

The UVM factory pattern dynamically generates

instruction objects based on the defined ISA

specifications.

The VCS constraint solver ensures operand

legality, avoiding issues like writes to reserved

registers.

Assembly Instruction Generation

Instantiated instruction objects are converted into

target assembly syntax using a stringification

engine.

This process enables the generation of diverse and

valid instruction streams for system- level

verification.

Instruction Set Abstraction Layer

Instruction Stream Randomization Layer

Randomizing Individual Instructions
This layer aims to randomize individual instructions and construct instruction stream stimuli.
It encapsulates the instruction stream logic into multiple API functions, allowing customization of desired instruction types and
formats.

Maintaining Instruction Stream Records
The framework maintains records of generated instruction streams, which is crucial for debugging and tracing errors.
This ensures that the verification process is traceable and any issues can be quickly identified and resolved.

API-Driven Instruction Generation
The APIs enable automated synchronization of memory access instructions and dynamic insertion of branch instructions.
They also simplify instruction mixing and type weighting, facilitating the generation of mixed instruction types for multi-
threaded processors.

Software Toolchain Layer

Instruction Stream Management

This layer focuses on managing the conversion of

instruction stream stimuli and the simulation process

of simulators, ensuring smooth integration with the

UVM environment.

It supports syntax parsing of Instruction Set

Architecture (ISA) and converts the generated

instruction stream into binary files for simulation.

01

Integration with UVM Environment

The integrated software toolchain includes assembler and

simulator interfaces, facilitating the conversion of

instruction streams into binary format.

This seamless integration enables efficient verification of the

Design Under Test (DUT) against specification expectations.

02

Golden Data Dump

The binary files generated from instruction streams serve as

golden data for dynamic simulation.

This ensures that the DUT's behavior aligns with the expected

specifications, enhancing the reliability of the verification process.

03

Debugging Support Layer
Critical Debugging Tools

This layer provides essential tools for debugging

complex instruction stream stimuli.

It includes mechanisms for identifying faulty

threads and tracing back through the

instruction stream to locate erroneous

instructions.
Improving Debugging Efficiency

By leveraging recorded debug information, the

debugging subsystem can quickly pinpoint the root

cause of errors.

This significantly reduces the time and effort required

for debugging, enhancing overall verification efficiency.

Visualizing Dependency Chains

The debugging support layer also visualizes dependency

chains across threads, providing a clear understanding

of the relationships between instructions.

This helps in diagnosing complex issues such as cache

coherence problems and memory access conflicts.

API encapsulation and
instruction flow constraints

This embedded API serves as the foundation for

instruction generation in the instruction stream.

It provides users with interfaces for configuring

instruction types, registers, and special instruction

fields while balancing high reusability and

randomness.

This API handles the insertion of branch/jump instructions.

It ensures that random jumps adhere to constraints such as

legal jump ranges and avoiding jumps into synchronization

regions.

This API specializes in generating load/store

(memory access) instructions.

It internally models an address management

and synchronization mechanism to avoid cache

coherence issues in multi- threaded processors.

This API randomly inserts instructions into existing

instruction streams.

It allows users to specify the number of instructions to

insert, the starting position, and the instruction queue.

API Functions

• Instruction queue
• Register interface(vector register/scalar

register/special register/immediate)
• Functional configuration args for special

instructions
• Instruction comment
• Jump instruction target instruction

label
• Atomic switch between instructions
• Interface fully configured check switch

API Interface

Atomic schematic diagram

• Load/Store instruction queue
• Saved address register
• offset address
• exception insert switch

API Interface

• Instruction queue
• Instruction count
• Starting instruction stream

index
• The maximum jump range for

jump instructions

API Interface

• Instruction queue
• Instruction count
• Starting instruction stream index

API Interface

Instruction Stream Constraints
Hierarchical Constraint
Mechanism

The API interfaces ensure instruction legality through a hierarchical

constraint mechanism.

This includes mandatory constraints that serve as the baseline for

legal instruction streams and user- configurable constraints for

specific verification scenarios.

Examples of mandatory constraints include register number

range constraints, instruction format alignment, and

prevention of illegal instruction encoding.

These constraints ensure that the generated instruction streams

strictly comply with the Instruction Set Architecture (ISA).

Examples of user- configurable constraints include address legality

control, customizable jump range settings, and address exception

trigger. These constraints allow users to tailor the instruction

streams to meet specific verification requirements and test various

edge cases.

The framework employs differentiated constraint strategies based on instruction

types:

Calculational instructions: Constrained within the valid register range according to

the ISA spec and avoiding contaminating reserved registers in the environment

Memory access instructions: In addition to the constraints of registers, it is also

necessary to constrain the range of addresses and data synchronization between

memory access instructions

Jump instructions: Strict control over jump ranges and protection of

synchronization instructions and avoid jumping to illegal instruction segments.

Mandatory Constraints

User-Configurable Constraints Differentiated Constraint Strategies

Example Usage of APIs

01.

By combining these APIs, users can quickly construct

an ISA- based random kernel.

For example, generating a kernel with 8 load/store

instructions, 80 computational instructions, and 8

branch instructions is fully randomized and automated.

When generating a kernel through APIs, users only need

to configure the interfaces they care about. For

unconfigured interfaces, parameters will be randomly

assigned within the legal range, and the instruction

stream sequence will also reflect the high randomness

inherent in the APIs.

The use of APIs significantly simplifies the process of

generating complex instruction streams. Users can define

the scale and type of instructions they wish to randomize,

leaving intricate details to the API's automated

mechanisms

High flexibility

High randomness02.

03.

The closed-loop mechanism of debugging

This framework records the thread ID, global sequence

number, operation type, and memory access address of

memory access instructions during the instruction stream

generation process.

This comprehensive memory access data record can

accurately track and debug complex instruction streams.

The debugging mechanism implements a reverse tracing

mechanism for multi-threaded memory operations.

After detecting data errors at a specific address, the script

quickly extracts the spatiotemporal context of all relevant

instructions, allowing for precise backtracking to the first

erroneous memory operation.

This mechanism also visualizes the address data transfer

chain across threads, providing a clear relationship

between memory access instructions.

This helps diagnose complex issues such as cache

consistency and memory access conflicts.

Debug data recording Reverse-Tracing Mechanism Visual memory access address
delivery chain

Example of debugging
memory access address：

Experimental Validation and
Conclusion

Experimental Results

The random instruction streams constructed

using APIs in the RIG environment uncovered

60+ bugs in the project.

60% of bugs were detected within the first

two months of the verification cycle, with the

Device Under Test (DUT) stabilizing around

the six- month mark.

Rapid Bug Detection

The API- generated random instruction streams

identified 3 bugs that were undetectable by

module- level verification or semi- directed single-

instruction- type stimulus.

These bugs required a mix of instruction types and

sufficient randomness to manifest, proving the

effectiveness of the stochastic approach.

Identification of Undetected Bugs
Functional coverage data collected over two weeks of regression testing

shows that:

All instructions defined in the ISA SPEC were triggered.

Every instruction exercised the full register set.

Memory addresses covered boundary conditions and hardware- specific

special addresses.

Jump instructions spanned all legal boundary ranges.

This confirms that the randomness of API- generated stimulus

comprehensively covers the ISA specification and critical architectural

features.

Comprehensive Functional
Coverage

Conclusion

Efficient Verification
Framework

This paper presents an efficient system-

level random verification framework for

multi- threaded processors.

It integrates four layers: Software

Toolchain Layer, Instruction Set

Abstraction Layer, Instruction Stream

Randomization Layer, and Debugging

Support Layer.

Key Innovations

The framework features modular

instruction- type combinations through

embedded APIs and an automated multi-

thread conflict resolution mechanism.

It also establishes a closed- loop debug

support mechanism, significantly improving

debugging efficiency and defect localization.

Future Work and Enhancements
Expanding Framework Capabilities
Future work includes expanding the framework's

capabilities to support more complex instruction sets

and processor architectures.

This will involve enhancing the API functions and

constraint mechanisms to cover a broader range of

verification scenarios.

Improving Debugging Tools
Further improvements to the debugging tools will

focus on providing more detailed and intuitive

error analysis.

This will help validation engineers quickly identify

and resolve issues, further reducing verification

cycles.

Enhancing Randomization Techniques
Continuous enhancement of randomization

techniques will ensure comprehensive coverage

of the instruction set architecture.

This will involve exploring new algorithms and

methods to improve the randomness and

effectiveness of instruction stream generation.

The framework demonstrates substantial

improvements in multi- threaded instruction stream

construction efficiency.

Users need only write 10+ lines of code to generate

mixed stimulus streams containing 5,000–10,000

instructions, reducing code volume by over 90%

compared to manual methods.

Significant Code Reduction

Thank You

