
SLEG: A LLM-based SVA Evaluation
and Generation System

Sichao Yang*, Baoqi Zhang, Jun Liu
GalaxFV, X-EPIC

Sihang Shang*, Junjian Peng, Gaihao Liu
SANECHIPS TECHNOLOGY

Content

Motivation01

Experiments04

Challenge02 Method03

Conclusion05

Ø Motivation
u SVAs are essential for Design Verification.
u LLM-based tools are under rapid commercialization.

[1] In 2020, more than 75% ASIC designs
utilized assertion-based validation

0

20

40

60

80

C… F… A…

2012 2016 2020
D

es
ig

n
Pr

oj
ec

ts

Transaction
(TLM)SystemC

RTL Design
VHDL/Verilog

Architectural
Exploration

Pre-
Silicon
Validation

Assertions

Pr
e-

Si
lic

on

Fabrication

u SVA can be complicated and difficult to describe.

@(posedge clk) $rose(start) |-> a ##1
stop ##1 !stop

Human Description SVA
When the posedge of signal <clk> is triggered, if
signal <start> rises, it implies that after 2 clk cycles,
signal <a> should be high for three repetitions non-
consecutively and after one time delay signal <stop>
should be active, and after another one time delay
<stop> should be low.

(@(posedge clk) $rose(start) |-> ##2
(a[=3]) ##1 stop ##1 !stop)

The concatenation of signal <rbF> and <rbE> should
have only 1 bit high.

$onehot({rbF, rbE})

When the posedge of signal <clk> is detected, the
value of <tmp_ic_miss_state> is equal to 7'b0000001
or 7'b00000010 or 7'b0000100 or 7'b0001000.

@(posedge clk)
tmp_ic_miss_state==7'b0000001
|tmp_ic_miss_state==7'b0000010
|tmp_ic_miss_state==7'b0000100
|tmp_ic_miss_state==7'b0001000

……

Ø Challenge

Manual check Similarity measures Functional testing

@(posedge clk) $rose(start) |-> (a==3) ||
(b>0 && !c)

@(posedge clk) $rose(start) |=> (a==3) ||
b!=0 && c==0

1 0.8 10.5

Golden SVA

Predicted SVA

Weighted N-gram Match [2] AST Match

Ø Challenge
u Traditional methods for SVA evaluation lack preciseness.

M ⊨ �
Model Checking

�1 ⇔ �2
Equivalence Checking

Combinational EC Sequential EC

If �1 ⊕ �2 is UNSAT,
Then �1 ⇔ �2 is True

If M ∧ ¬� is UNSAT,
Then M ⊨ � is True

Encoded as a
SAT problem

Γ ⊢ �
Theorem Proving

Formal Verification
requirements system

Formalizing Modeling

Property
specification

system
model

Model Checking

satisfied violated +
counterexample

insufficient
memory Simulation

Location
error

Predicted SVA Golden SVA

[7]

Ø Method – Evaluation by Formal Checking

u We proposed a Formal-Checking-based evaluation method that is: Sound, Complete and Efficient. [4]

Tcl script

Spec&impl prop

signals.txt

Result

set_app_mode SVAC
svac_read_sig signals.txt
svac_map_prop -specFile specPropFile.txt -implFile
implPropFile.txt
svac_elaborate
create_clock -clock clk -period 100
check_goals -block

spec_p1; @(posedge clk) $changed(a) |-> b[->1]; impl_p1;
@(posedge clk) $changed(a)1 -> !b[*0:$] ##1 b
spec_p2; @(posedge clk) $rose(a) l=> b until !c; impl_p2;
@(posedge clk) $rose(a) |-> ##1 b until_with !c

clk
srC
Dst
[1:0] a
[1:0] b
[1:0] c

---[SVAC]------------------------------------
Assertion
[0]svac_top.spec_p1_comp_impl_p1 proven
[1]svac_top.spec_p2_comp_impl_p2 falsified
[2]svac_top.spec_p3_comp_impl_p3 proven
galaxfv_shell> _

Ø Method – Evaluation by Formal Checking

u An app (SVAC) in GalaxFV was developed for SVA checking.

1. Input data
2. Prediction
3. Evaluation
4. SVAC workflow

Human Description

Testbench, testcases

Golden code

Prompt
engineering

Retrieval
Augmentation

LLM
Agent ②①

Generated code

Syntax checker

Weighted Scorer

pass
Functional
Checker

Quality
checker

Score

Formal Simulation

Compile
Pred

Compile
Golden

Mapping circuit points

Generate formal checking problem

Solving

pass Counter
example ④

③

u SLEG includes SVAC and schedule it with other checkers.

Ø Method – Evaluation by Formal Checking

Ø Method – Evaluation by Formal Checking

u SVAC can evaluate prompting techniques.

u SVAC can check label correctness while bootstrapping.
• Self-instruct with LM is the common way to synthesize new data or label;
• But traditional filtering techniques include only heuristics.

SVA

NL Spec

SVA’

EC? (SVA,
NL)

yes

no

175 seed tasks with1
instruction and instance
per task Task

Pool

Step 1:Instruction
Generation

Step 2: Classification
Task identification

Instruction : Give me a quote from a
famous person on this topic.

TaskLM LM

Step 4:
Filtering Instruction : Find out if the given text is in favor of or against abortion

Class Label: Pro-abortion
Input: I believe that women should have the right to choose whether or
not they want to have an abortion.

Task

Instruction : Give me a quote from a famous person on this topic

Input: Topic: The importance of being honest.
Output: "Honesty is the first chapter in the book of wisdom.". Thomas
Jefferson

Task

Step 3:lnstance Generation

LM

Yes

No

Output-
first

Input-first

Ø Method – Evaluation by Formal Checking

[5]

[6]

• Reconstruction check;
• Consistency check;
• Check with golden model;

A. Explicit Learning

Golden
code Loss

Human
Description

Predicted
Code

LLM-CG

GC

PC HD

NN-FC

Loss

Training lnference
Human Description

SVAC
CG

codecodecode

codecode

code

SC

FC

B. Implicit Learning

Golden code

Human
Description

LossSimilarity scorer

Quality scorer

C. Post-training compute w/ SVAC:u SVAC can enhance LLM performance.

Ø Method – Evaluation by Formal Checking

SVAC

[8]

Predicted
code

Predicted
code

Predicted
code

Ø Method – Iterative Optimization

User input

Generated SVA

Prompt

Scenario Setup

Text Rewrite

Few Shots

Prompt
Optimization

LLM-based
Generation

Result Evaluation

Completion
Candidate

Golden
SVAs

Golden
input

SVAC

Analysis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pass@1 pass@5 pass@10

Before Optimization After Optimization

18.3%

35.8%
39.2%

62.2%

50.0%

66.7%

Ø Experiments

• Automated SVA generation with LLMs and evaluated by formal checking.

• Improved the baseline by 58% for Pass@5 and 33% for Pass@10 through testing SLEG
with Sanechips Tech. in real IC projects.

• Future: Continue partnership with Sanenchips to expand LLM+FV design paradigm for other
generation tasks (e.g. SV/RTL/SystemC) and application scenarios (e.g., data bootstrapping,
enhanced prediction).

Ø Conclusions

Thank you

关 注 官 方 微 信
了 解 芯 华 章 最 新 动 向

Ø References
1. Witharana, Hasini, Yangdi Lyu, Subodha Charles, and Prabhat Mishra. “A Survey on Assertion-Based Hardware Verification.” ACM Computing Surveys 54, no. 11s

(January 31, 2022): 1–33. https://doi.org/10.1145/3510578.

2. Ren, Shuo, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. “CodeBLEU: A Method for
Automatic Evaluation of Code Synthesis.” arXiv, September 27, 2020. http://arxiv.org/abs/2009.10297.

3. Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, et al. “Evaluating Large Language Models
Trained on Code.” arXiv, July 14, 2021. http://arxiv.org/abs/2107.03374.

4. Yang, Sichao, and Ye Yang. “FormalEval: A Method for Automatic Evaluation of Code Generation via Large Language Models.” In 2024 2nd International Symposium
of Electronics Design Automation (ISEDA), 660–65. IEEE, 2024.

5. Lu, Yao, Shang Liu, Qijun Zhang, and Zhiyao Xie. “RTLLM: An Open-Source Benchmark for Design RTL Generation with Large Language Model.” arXiv, November 11,
2023. http://arxiv.org/abs/2308.05345.

6. Mneimneh, M.N., and K.A. Sakallah. “Principles of Sequential-Equivalence Verification.” IEEE Design and Test of Computers 22, no. 3 (May 2005): 248–57.
https://doi.org/10.1109/MDT.2005.68.

7. Joost-Pieter Katoen. “Introduction to Model Checking.” RWTH Aachen University. https://moves.rwth-aachen.de/teaching/ss-16/ss16introduction-to-model-checking.

8. Liu, Shang, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. “RTLCoder: Outperforming GPT-3.5 in Design RTL Generation with Our Open-Source
Dataset and Lightweight Solution.” arXiv, January 17, 2024. http://arxiv.org/abs/2312.08617.

http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2308.05345
https://doi.org/10.1109/MDT.2005.68
https://moves.rwth-aachen.de/teaching/ss-16/ss16introduction-to-model-checking

