DESIGN AND VERZIFIOC%'HSON”
ENVEDN (accellera
SYSTEMS INITIATIVE

SLEG: A LLM-t
and Genel

&
Sichao Yang*, Baoqi Zhang, Jun / |

GalaxFV, X-EPIC

CHINA SYSTEMS INITIATIVE

-~ Content

o Motivation > @ Challenge
Experiments 05 fi? Copfelision
Q- O~

{(//

{1} | \
i LN
ApPr 28 sizin \\\\

R 470
BNVETT (accellera

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

> Motivation

+ SVAs are essential for Design Verification.

+ LLM-based tools are under rapid commercialization.

Architectural
Transaction Exploration

(TLM)SystemC

c [~ — Assertions

Qo 1

= I

® |

e vY Pre-

o RTL Design Silicon

VHDL/Verilog Validation
v
}
1
1
1
------ Fabrication -----------

Design Projects

W 2012 2016 m 2020

O.'. Q - v.'.

[1] In 2020, more than 75% ASIC designs
utilized assertion-based validation

80

6

o

4

o

2

o

o

© tobnine @;quo o= replit

A3 :
@le) GitHub .
g“mg Copilot @ Intellicode

5y | Ask
Tﬂm ngi
2L Cody [codiga {f) CudeGeeX

nEErsoDE @l e g Figstack

@ OpenAl Grok

* . |
Gemini | iss™

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

» Challenge

+ SVA can be complicated and difficult to describe.

@(posedge clk) $rose(start) |-> a ##1
stop ##1 Istop

Human Description SVA

(@(posedge clk) $rose(start) |-> ##2
(a[=3]) ##1 stop ##1 Istop)

When the posedge of signal <clk> is triggered, if
signal <start> rises, it implies that after 2 clk cycles,
signal <a> should be high for three repetitions non-
consecutively and after one time delay signal <stop> . A, B ,; C ;D ;E ; F ;G
should be active, and after another one time delay :
<stop> should be low.

cdk — — — _
The concatenation of signal <rbF> and <rbE> should $onehot({rbF, rbE}) : ;
have only 1 bit high. : :@ : : :
start —!—_ e
When the posedge of signal <clk> is detected, the @(posedge clk) : : : : : : : '
value of <tmp_ic_miss_state> is equal to 7'b0000001 | tmp_ic_miss_state==7'b0000001
or 7'b00000010 or 7'b0000100 or 7'b0001000. [tmp_ic_miss_state==7'b0000010 5 O
[tmp_ic_miss_state==7'b0000100 : : : : : : :
tmp_ic_miss_state==7'00001000 ,
qop i i @—@

CONFERENCE AND EXHIBITION

o202
DNV (aceellera

SYSTEMS INITIATIVE

» Challenge

+ Traditional methods for SVA evaluation lack preciseness.

Manual check Similarity measures Functional testing
I

Property
I
@(posedge clock)

I

GOIden SVA @(posedge Clk) -(Start) |-> (a==3) || : i i tart(0)=0, a(0)=0, b(0)=0, c(0)=1
R (b>0 && .) y |-> (overlapping Impl ion) Z(E:B, ;(ijio, ;(i):l, ;t;ri(l);i

expected result: pass
A < $rose(start) && (AND) case 2:
/ \
C

SVA:
@(posedge clk) Srose(start) |[-> (a==3) || (b>0 && !c)

Test cases:
case 1:

»

start(0)=0, a(0)=0, b(0)=0, c(0)=1

[l (OR) ==0 a(1)=2, b(1)=5, c(1)=0, start(l)=1
v \ expected result: pass
1 08 05 1 (a==3) b!1=0 case 3:

start(0)=0, a(0)=0, b(0)=0, c(0)=1

roperty a(l)=2, b(1)=0, c(1)=1l, start(l)=1
expected result: fail
case 4:

@(posedge clock)
start(0)=0, a(0)=0, b(0)=0, c(0)=0
l a(1)=0, b(1)=0, c(1)=0, start(1)=0

v v
v v . : 5
@(posedge clk) BlBSE(start) |=> (a==3) || i
expected result: fail
- Srose(start)

Predicted SVA

b!:o && < Il (Or) case 5:
/ i start(0)=0, a(0)=0, b(0)=0, c(0)=0
(a==3) &8& (AND) a(1)=2, b(1)=1, c(1)=0, start(1)=1
/ N expected result: pass
b1=0 C==0):

Weighted N-gram Match [2] AST Match

CONFERENCE AND EXHIBITION

R 470
BNVETT (accellera

SYSTEMS INITIATIVE

» Method - Evaluation by Formal Checking

+ We proposed a Formal-Checking-based evaluation method that is: Sound, Complete and Efficient. [4]

Predicted SVA Golden SVA

Formal Verification
\ 4

i

v v v
M 1= 2 re Modeli
Model Checking Equivalence Checking Theorem Proving Formalizing odeling
A 4
l l Property system
specification model A
1
Combinational EC Sequential EC :
1
1
Model Checking [« \
Encoded as a I
1 SAT problem :
1

Y \ 4

M = is UNSAT, Voo plE NS tisfied insufficient violated + Simulation —» Location
Then M is True Then ; = ,isTrue sausthie memory counterexample imulation error

[7]

o202
DNV (aceellera

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

» Method - Evaluation by Formal Checking
+ An app (SVAC) in GalaxFV was developed for SVA checking.

Tcl script signals.txt
set_app_mode SVAC :Irlé
svac_read_sig signals.txt Dst
svac_map_prop -specFile specPropFile.txt -implFile [1:0] a
implPropFile.txt [1:0] b
svac_elaborate [1:0] c
create clock -clock clk -period 100
check_goals -block Result

] [SVAC]
Spec&impl prop Assertion

[0]svac_top.spec_p1_comp_impl_p1 proven

spec_p1; @(posedge clk) $changed(a) |-> b[->1]; impl_p1; [1]svac_top.spec_p2_comp_impl_p2 falsified
@(posedge clk) $changed(a)1 -> !b[*0:$] ##1 b [2]svac_top.spec_p3 _comp_impl_p3 proven
spec_p2; @(posedge clk) $rose(a) I=> b until !c; impl_p2; galaxfv_shell> _

@(posedge clk) $rose(a) |-> ##1 b until_with !c

CONFERENCE AND EXHIBITION

R 470
BNVETT (accellera

SYSTEMS INITIATIVE

: . 1. Inputdata
» Method - Evaluation by Formal Checking o i |
3. Evaluation
+ SLEG includes SVAC and schedule it with other checkers. | 4. SVACworkflow |
frTT T T Em T mmE—— N ' \
T 1 > —_— I ! 1
Human Description ! B g% : : !
== e e e e e e ; : Prompt : 1 :
' Testbench, testcases : I engineering l o :
TP e P e EE ' : Retrieval ! ! :
| Augmentation I 1
Golden code : LLM é o , , :
@ ! Agent @ 0! Compile Compile |, :
SRR Sl Pred Golden | !
: v v !
Generated code L . o !
: Mapping circuit points !
pmmmonae- T e E ; :
L _ | Generate formal checking problem i
| Syntax checker Functional : i
: Checker : ¥ :
' . ' Solvin :
o ¥ | ? !
| AE— : :
@ : Weighted Scorer | > CQh:illgr E ""C_E)Ij_rﬁe}""i :
' D oo | example | @:
LS < et ’]

R 470
BNVETT (accellera

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

» Method — Evaluation by Formal Checking

+ SVAC can evaluate prompting techniques.

Here are functions and operators in SVA and their descriptions: stepl: analyze the description’s structure, check if it is an immediate or EVAL "~ Techniques
concurrent assertion. i BT
FUNCTION DESCRIPTION
: = =G step2: check if it contains sequence, asynchronous reset (disable iff)or syntax_guarding
$rose(expression) returns true if the expression changed to 1. Otherwise, it) knowledge appending
clocking (posedge clk) part ? : _
returns false chain_of_thought
fewshot_learning
. , gpt4
OPERATOR DESCRIPTION & Knowledge] . [J Few-Shot
##n Delay operators - Fixed n cycles time delay. e.g.: "one time delay” L Appending Lea rning J
is ##1
' Here are a few examples for the task: BE Tochnioues
##[m:n] Delay operators - from m to n cycles _ q
[Description] basic prompt
When the posedge of signal <c1k> is detected, signal <sys> should be greater syntax_guarding
than 10. knowledge appendin
Here are some rules you should follow when writing SVA code: [Assertion] Al go f7 t: (?u ght d
@(posedge clk) cyc >10 fewsh_o t _Ieam =
* make sure the left bracket number is equal to the right bracket; _’[4 g
gap
. .

CONFERENCE AND EXHIBITION

o202
DNV (aceellera

SYSTEMS INITIATIVE

» Method — Evaluation by Formal Checking

+ SVAC can check label correctness while bootstrapping.

» Self-instruct with LM is the common way to synthesize new data or label;
« But traditional filtering techniques include only heuristics.

Step 2: Classification

175 seed tasks with1 Step 1:Instruction Task identification
instruction and instance Generation askide catio
per task Task ¥
Pool et
i | A N e —
> 3 —D e~ | Instruction : Give me a quote from a —
<& &_ m— famous person on this topic.
Step 3:Instance Generation
Step 4: / p
Fllterlng/ Instruction : Find out if the given text is in favor of or against abortion Yes &
A Class Label: Pro-abortion LM
== Input: | believe that women should have the right to choose whether or ‘f‘ p'J"
| not they want to have an abortion. irs
Instruction : Give me a quote from a famous person on this topic No
Input: Topic: The importance of being honest. .
Input-first

Output: "Honesty is the first chapter in the book of wisdom.". Thomas
Jefferson [5]

DV (accellera

CHINA SYSTEMS INITIATIVE

» Method — Evaluation by Formal Checking

* A.Sgﬁ%tfeaarr‘ni%ghance LLM performance' C. Post-training compute w/ SVAC:

Training Inference _
Golden - - Reconstruction check;
B9E3 . Consistency check;

LLM-CG Check with golden model;

p e
1 v

: 6

o — L

S
O]

B. Implicit Learning

Golden code
Similarity scorer
Human
Description K— -

Verification

Reconstruction

[8]

DV (accellera
CHINA '

SYSTEMS INITIATIVE

» Method — iterative Optimization

[Prompt]

l l Optimization J

Scenario Setup

Text Rewrite LLM-based
Generation

Few Shots

Generated SVA T
._

e

Golden

Result Evaluation

Completion
—> >
Candidate

SVAs

Golden
input

Analysis

2025

DESIGN AND VI ICATION™

BNVETT (accellera

CONFERENCE AND EXHIBITION

CHINA

\

SYSTEMS INITIATIVE

» Experiments

Beginner

Create a SystemVerilog assertion named "p_signal_follow" that with 3 signals (i e, clk, src, dst)
and includes an additional temporary variable ‘tmp'. The assertion should ensure that when the
‘src’ signal changes at the positive edge of 'clk’, the 'dst’ signal should adopt the value of 'src’ at
the time of its change, within a timeframe ranging from 0 to 10 clock cycles after this change.

property p_signal_follow;

bit tmp;

@(posedge clk) ($changed(src),tmp=src) |-> ##[0:10] dst==tmp;
endproperty
assert property (p_signal_follow);

Experienced

Construct a SystemVerilog assertion named "p_rose_throughout” that involves three signals (i.e.,
clk, a, b, c). This assertion checks that whenever signal ‘a’ rises (transitions from low to high) at
the positive edge of 'clk’, the signal 'b' must be true continuously during the entire period when
signal 'c’ is false, which lasts for exactly one clock cycle following the rise of 'a'.

property p_rose_throughout;

@(posedge clk) $rose(a) |-> b throughout !c [->1] ;
endproperty
assert property (p_rose_throughout);

Expert

Design a SystemVerilog assertion named "p_within_rst" that involves 6 signals (i.e., clk, rst n, a,
b, c, d). This assertion ensures that when signal ‘a’ falls (transitions from high to low) at the
positive edge of 'clk’, a specific sequence involving signals 'c' and 'd" must occur within a
defined window of time marked by signal 'b’ falling and then rising, provided that the reset
signal 'rst_n' is high (active). Additionally, this behavior is only checked when the reset signal
‘rst_n’ is high, ensuring that the assertion is disabled (does not evaluate or enforce the rule)
when 'rst_n' is low (reset condition).

property p_within_rst;
@(posedge clk) disable iff(!rst_n) $fell(a) |-> ((c [->2] ##1 d) within
($fell(b) ##[5:10] $rose(b)));
endproperty
assert property (p_within_rst);

0.8

0.7 1

0.6

0.5 1

0.4+

0.3

0.2

0.1+

B Before Optimization ¥ After Optimization

o 2025
=)Y{={a1N accellera

SYSTEMS INITIATIVE

> Conclusions

« Automated SVA generation with LLMs and evaluated by formal checking.

« Improved the baseline by 58% for Pass@5 and 33% for Pass@10 through testing SLEG
with Sanechips Tech. in real IC projects.

» Future: Continue partnership with Sanenchips to expand LLM+FV design paradigm for other
generation tasks (e.g. SV/RTL/SystemC) and application scenarios (e.g., data bootstrapping,
enhanced prediction).

DESIGN AND VERZIFIOC%'HSONYM
ENVEDN (accellera
SYSTEMS INITIATIVE

q. I.
2TA% g,
" - #:1. n \z\,

"=l 11 WA
W G2 TSI R

|
.((&m\\\\\\\\\\\
XETEBME

DV

2025
BVE (accelera

SYSTEMS INITIATIVE

> References

Witharana, Hasini, Yangdi Lyu, Subodha Charles, and Prabhat Mishra. “A Survey on Assertion-Based Hardware Verification.” ACM Computing Surveys 54, no. 11s
(January 31, 2022): 1-33. https://doi.org/10.1145/3510578.

Ren, Shuo, Daya Guo, Shuai Lu, Long Zhou, Shuijie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. “CodeBLEU: A Method for
Automatic Evaluation of Code Synthesis.” arXiv, September 27, 2020. http://arxiv.org/abs/2009.10297.

Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, et al. “Evaluating Large Language Models
Trained on Code.” arXiv, July 14, 2021. http://arxiv.org/abs/2107.03374.

Yang, Sichao, and Ye Yang. “FormalEval: A Method for Automatic Evaluation of Code Generation via Large Language Models.” In 2024 2nd International Symposium
of Electronics Design Automation (ISEDA), 660-65. IEEE, 2024.

Lu, Yao, Shang Liu, Qijun Zhang, and Zhiyao Xie. “RTLLM: An Open-Source Benchmark for Design RTL Generation with Large Language Model.” arXiv, November 11,
2023. http://arxiv.org/abs/2308.05345.

Mneimneh, M.N., and K.A. Sakallah. “Principles of Sequential-Equivalence Verification.” IEEE Design and Test of Computers 22, no. 3 (May 2005): 248-57.
https://doi.org/10.1109/MDT.2005.68.

Joost-Pieter Katoen. “Introduction to Model Checking.” RWTH Aachen University. https://moves.rwth-aachen.de/teaching/ss-16/ss16introduction-to-model-checking.

Liu, Shang, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. “RTLCoder: Outperforming GPT-3.5 in Design RTL Generation with Our Open-Source
Dataset and Lightweight Solution.” arXiv, January 17, 2024. http://arxiv.org/abs/2312.08617.

http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2308.05345
https://doi.org/10.1109/MDT.2005.68
https://moves.rwth-aachen.de/teaching/ss-16/ss16introduction-to-model-checking

