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Ø Motivation
u SVAs are essential for Design Verification.
u LLM-based tools are under rapid commercialization.

[1] In 2020, more than 75% ASIC designs 
utilized assertion-based validation 
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u SVA can be complicated and difficult to describe.

@(posedge clk) $rose(start) |-> a ##1 
stop ##1 !stop

Human Description SVA
When the posedge of signal <clk> is triggered, if 
signal <start> rises, it implies that after 2 clk cycles, 
signal <a> should be high for three repetitions non-
consecutively and after one time delay signal <stop> 
should be active, and after another one time delay 
<stop> should be low.

(@(posedge clk) $rose(start) |-> ##2 
(a[=3]) ##1 stop ##1 !stop)

The concatenation of signal <rbF> and <rbE> should 
have only 1 bit high.

$onehot({rbF, rbE})

When the posedge of signal <clk> is detected, the 
value of <tmp_ic_miss_state> is equal to 7'b0000001 
or 7'b00000010 or 7'b0000100 or 7'b0001000.

@(posedge clk) 
tmp_ic_miss_state==7'b0000001
|tmp_ic_miss_state==7'b0000010
|tmp_ic_miss_state==7'b0000100
|tmp_ic_miss_state==7'b0001000

……

Ø Challenge



Manual check Similarity measures Functional testing

@(posedge clk) $rose(start) |-> (a==3) || 
(b>0 && !c)

@(posedge clk) $rose(start) |=> (a==3) || 
b!=0 && c==0

1 0.8 10.5

Golden SVA

Predicted SVA

Weighted N-gram Match [2] AST Match

Ø Challenge
u Traditional methods for SVA evaluation lack preciseness.



M ⊨ �
Model Checking

�1 ⇔ �2
Equivalence Checking

Combinational EC Sequential EC

If �1 ⊕ �2 is UNSAT,
Then �1 ⇔ �2 is True

If M ∧ ¬� is UNSAT,
Then M ⊨ � is True

Encoded as a 
SAT problem

Γ ⊢  �
Theorem Proving

Formal Verification
requirements system

Formalizing Modeling

Property
specification

system 
model

Model Checking

satisfied violated +
counterexample

insufficient
memory Simulation

Location 
error

Predicted SVA Golden SVA

[7]

Ø Method – Evaluation by Formal Checking

u We proposed a Formal-Checking-based evaluation method that is: Sound, Complete and Efficient. [4]



Tcl script

Spec&impl prop

signals.txt

Result

set_app_mode SVAC
svac_read_sig signals.txt
svac_map_prop -specFile specPropFile.txt -implFile 
implPropFile.txt
svac_elaborate
create_clock -clock clk -period 100
check_goals -block

spec_p1; @(posedge clk) $changed(a) |-> b[->1]; impl_p1; 
@(posedge clk) $changed(a)1 -> !b[*0:$] ##1 b
spec_p2; @(posedge clk) $rose(a) l=> b until !c; impl_p2; 
@(posedge clk) $rose(a) |-> ##1 b until_with !c

clk
srC
Dst
[1:0] a
[1:0] b
[1:0] c

---[ SVAC  ]------------------------------------
Assertion
[0 ]svac_top.spec_p1_comp_impl_p1 proven
[1 ]svac_top.spec_p2_comp_impl_p2 falsified
[2 ]svac_top.spec_p3_comp_impl_p3 proven
galaxfv_shell> _ 

Ø Method – Evaluation by Formal Checking

u An app (SVAC) in GalaxFV was developed for SVA checking.



1. Input data
2. Prediction 
3. Evaluation 
4. SVAC workflow

Human Description
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u SLEG includes SVAC and schedule it with other checkers.

Ø Method – Evaluation by Formal Checking



Ø Method – Evaluation by Formal Checking

u SVAC can evaluate prompting techniques.



u SVAC can check label correctness while bootstrapping.
• Self-instruct with LM is the common way to synthesize new data or label;
• But traditional filtering techniques include only heuristics.

SVA 

NL Spec

SVA’

EC? (SVA, 
NL)

yes

no

175 seed tasks with1 
instruction and instance 
per task Task 

Pool

Step 1:Instruction 
Generation

Step 2: Classification
Task identification

Instruction : Give me a quote from a 
famous person on this topic.

TaskLM LM

Step 4: 
Filtering Instruction : Find out if the given text is in favor of or against abortion

Class Label: Pro-abortion
Input: I believe that women should have the right to choose whether or 
not they want to have an abortion.

Task

Instruction : Give me a quote from a famous person on this topic

Input: Topic: The importance of being honest.
Output: "Honesty is the first chapter in the book of wisdom.". Thomas 
Jefferson

Task

Step 3:lnstance Generation

LM

Yes

No

Output-
first

Input-first

Ø Method – Evaluation by Formal Checking

[5]



[6]

• Reconstruction check;
• Consistency check;
• Check with golden model;

A. Explicit Learning

Golden
code Loss

Human
Description

Predicted
Code

LLM-CG

GC

PC HD

NN-FC

Loss

Training lnference
Human Description

SVAC
CG

codecodecode

codecode

code

SC
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B. Implicit Learning

Golden code

Human
Description

LossSimilarity scorer

Quality scorer

C. Post-training compute w/ SVAC:u SVAC can enhance LLM performance.

Ø Method – Evaluation by Formal Checking

SVAC

[8]
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Ø Method – Iterative Optimization

User input
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Ø Experiments



• Automated SVA generation with LLMs and evaluated by formal checking.

• Improved the baseline by 58% for Pass@5 and 33% for Pass@10 through testing SLEG 
with Sanechips Tech. in real IC projects.  

• Future: Continue partnership with Sanenchips to expand LLM+FV design paradigm for other 
generation tasks (e.g. SV/RTL/SystemC) and application scenarios (e.g., data bootstrapping, 
enhanced prediction).

Ø Conclusions



Thank you
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