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> Motivation

+ SVAs are essential for Design Verification.

+ LLM-based tools are under rapid commercialization.
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[1] In 2020, more than 75% ASIC designs
utilized assertion-based validation
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» Challenge

+ SVA can be complicated and difficult to describe.

@(posedge clk) $rose(start) |-> a ##1
stop ##1 Istop

Human Description SVA

(@(posedge clk) $rose(start) |-> ##2
(a[=3]) ##1 stop ##1 Istop)

When the posedge of signal <clk> is triggered, if
signal <start> rises, it implies that after 2 clk cycles,
signal <a> should be high for three repetitions non-
consecutively and after one time delay signal <stop> . A, B ,; C ;D ;E  ; F ;G
should be active, and after another one time delay :
<stop> should be low.

cdk — — — _
The concatenation of signal <rbF> and <rbE> should $onehot({rbF, rbE}) : ;
have only 1 bit high. : :@ : : :
start —!—_ e
When the posedge of signal <clk> is detected, the @(posedge clk) : : : : : : : '
value of <tmp_ic_miss_state> is equal to 7'b0000001 | tmp_ic_miss_state==7'b0000001
or 7'b00000010 or 7'b0000100 or 7'b0001000. [tmp_ic_miss_state==7'b0000010 5 O
[tmp_ic_miss_state==7'b0000100 : : : : : : :
tmp_ic_miss_state==7'00001000 ,
qop i i @—@
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» Challenge

+ Traditional methods for SVA evaluation lack preciseness.

Manual check Similarity measures Functional testing
I

Property
I
@(posedge clock)

I

GOIden SVA @(posedge Clk) -(Start) |-> (a==3) || : i i tart(0)=0, a(0)=0, b(0)=0, c(0)=1
R (b>0 && .) y |-> (overlapping Impl ion) Z(E:B, ;(ijio, ;(i):l, ;t;ri(l);i

expected result: pass
A < $rose(start) && (AND) case 2:
/ \
C

SVA:
@(posedge clk) Srose(start) |[-> (a==3) || (b>0 && !c)

Test cases:
case 1:

»

start(0)=0, a(0)=0, b(0)=0, c(0)=1

[l (OR) ==0 a(1)=2, b(1)=5, c(1)=0, start(l)=1
v \ expected result: pass
1 08 05 1 (a==3) b!1=0 case 3:

start(0)=0, a(0)=0, b(0)=0, c(0)=1

roperty a(l)=2, b(1)=0, c(1)=1l, start(l)=1
expected result: fail
case 4:

@(posedge clock)
start(0)=0, a(0)=0, b(0)=0, c(0)=0
l a(1)=0, b(1)=0, c(1)=0, start(1)=0

v v
v v . : 5
@(posedge clk) BlBSE(start) |=> (a==3) || i
expected result: fail
- Srose(start)

Predicted SVA

b!:o && < Il (Or) case 5:
/ i start(0)=0, a(0)=0, b(0)=0, c(0)=0
(a==3) &8& (AND) a(1)=2, b(1)=1, c(1)=0, start(1)=1
/ N expected result: pass
b1=0 C==0):

Weighted N-gram Match [2] AST Match
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» Method - Evaluation by Formal Checking

+ We proposed a Formal-Checking-based evaluation method that is: Sound, Complete and Efficient. [4]

Predicted SVA Golden SVA

Formal Verification
\ 4

i

v v v
M 1= 2 re Modeli
Model Checking Equivalence Checking Theorem Proving Formalizing odeling
A 4
l l Property system
specification model A
1
Combinational EC Sequential EC :
1
1
Model Checking [« \
Encoded as a I
1 SAT problem :
1

Y \ 4

M = is UNSAT, Voo plE NS tisfied insufficient violated + Simulation —» Location
Then M is True Then ; = ,isTrue sausthie memory counterexample imulation error

[7]
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» Method - Evaluation by Formal Checking
+ An app (SVAC) in GalaxFV was developed for SVA checking.

Tcl script signals.txt
set_app_mode SVAC :Irlé
svac_read_sig signals.txt Dst
svac_map_prop -specFile specPropFile.txt -implFile [1:0] a
implPropFile.txt [1:0] b
svac_elaborate [1:0] c
create clock -clock clk -period 100
check_goals -block Result

] [ SVAC ]
Spec&impl prop Assertion

[0 ]svac_top.spec_p1_comp_impl_p1 proven

spec_p1; @(posedge clk) $changed(a) |-> b[->1]; impl_p1; [1 ]svac_top.spec_p2_comp_impl_p2 falsified
@(posedge clk) $changed(a)1 -> !b[*0:$] ##1 b [2 ]svac_top.spec_p3 _comp_impl_p3 proven
spec_p2; @(posedge clk) $rose(a) I=> b until !c; impl_p2; galaxfv_shell> _

@(posedge clk) $rose(a) |-> ##1 b until_with !c
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: . 1. Inputdata
» Method - Evaluation by Formal Checking o i |
3. Evaluation
+ SLEG includes SVAC and schedule it with other checkers. | 4. SVACworkflow |
frTT T T Em T mmE—— N ' \
T 1 > —_— I ! 1
Human Description ! B g% : : !
== e e e e e e ; : Prompt : 1 :
' Testbench, testcases : I engineering l o :
TP e P e EE ' : Retrieval ! ! :
| Augmentation I 1
Golden code : LLM é o , , :
@ ! Agent @ 0! Compile Compile |, :
SRR Sl Pred Golden | !
: v v !
Generated code L . o !
: Mapping circuit points !
pmmmonae- T e E ; :
L _ | Generate formal checking problem i
| Syntax checker Functional : i
: Checker : ¥ :
' . ' Solvin :
o ¥ | ? !
| AE— : :
@ : Weighted Scorer | > CQh:illgr E ""C_E)Ij_rﬁe}""i :
' D oo | example | @:
LS < et ’ ]
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» Method — Evaluation by Formal Checking

+ SVAC can evaluate prompting techniques.

Here are functions and operators in SVA and their descriptions: stepl: analyze the description’s structure, check if it is an immediate or EVAL "~ Techniques
concurrent assertion. i BT
FUNCTION DESCRIPTION
: = =G step2: check if it contains sequence, asynchronous reset (disable iff)or syntax_guarding
$rose(expression) returns true if the expression changed to 1. Otherwise, it ) knowledge appending
clocking (posedge clk) part ? : _
returns false chain_of_thought
fewshot_learning
. , gpt4
OPERATOR DESCRIPTION & Knowledge ] . [ J Few-Shot
##n Delay operators - Fixed n cycles time delay. e.g.: "one time delay” L Appending Lea rning J
is ##1
' Here are a few examples for the task: BE Tochnioues
##[m:n] Delay operators - from m to n cycles _ q
[Description] basic prompt
When the posedge of signal <c1k> is detected, signal <sys> should be greater syntax_guarding
than 10. knowledge appendin
Here are some rules you should follow when writing SVA code: [Assertion] Al go f7 t: (?u ght d
@(posedge clk) cyc >10 fewsh_o t _Ieam =
* make sure the left bracket number is equal to the right bracket; _’[4 g
gap
. .
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» Method — Evaluation by Formal Checking

+ SVAC can check label correctness while bootstrapping.

» Self-instruct with LM is the common way to synthesize new data or label;
« But traditional filtering techniques include only heuristics.

Step 2: Classification

175 seed tasks with1 Step 1:Instruction Task identification
instruction and instance Generation askide catio
per task Task ¥
Pool et
i | A N e —
> 3 —D e~ | Instruction : Give me a quote from a —
<& &_ m— famous person on this topic.
Step 3:Instance Generation
Step 4: / p
Fllterlng/ Instruction : Find out if the given text is in favor of or against abortion Yes &
A Class Label: Pro-abortion LM
== Input: | believe that women should have the right to choose whether or ‘f‘ p'J"
| not they want to have an abortion. irs
Instruction : Give me a quote from a famous person on this topic No
Input: Topic: The importance of being honest. .
Input-first

Output: "Honesty is the first chapter in the book of wisdom.". Thomas
Jefferson [5]
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» Method — Evaluation by Formal Checking

* A.Sgﬁ%tfeaarr‘ni%ghance LLM performance' C. Post-training compute w/ SVAC:

Training Inference _
Golden - - Reconstruction check;
B9E3 . Consistency check;

LLM-CG Check with golden model;

p e
1 v

: 6

o — L

S
O]

B. Implicit Learning

Golden code
Similarity scorer
Human
Description K— -

Verification

Reconstruction

[8]
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» Method — iterative Optimization

[ Prompt ]

l l Optimization J

Scenario Setup

Text Rewrite LLM-based
Generation

Few Shots

Generated SVA T
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» Experiments

Beginner

Create a SystemVerilog assertion named "p_signal_follow" that with 3 signals (i e, clk, src, dst)
and includes an additional temporary variable ‘tmp'. The assertion should ensure that when the
‘src’ signal changes at the positive edge of 'clk’, the 'dst’ signal should adopt the value of 'src’ at
the time of its change, within a timeframe ranging from 0 to 10 clock cycles after this change.

property p_signal_follow;

bit tmp;

@(posedge clk) ($changed(src),tmp=src) |-> ##[0:10] dst==tmp;
endproperty
assert property (p_signal_follow);

Experienced

Construct a SystemVerilog assertion named "p_rose_throughout” that involves three signals (i.e.,
clk, a, b, c). This assertion checks that whenever signal ‘a’ rises (transitions from low to high) at
the positive edge of 'clk’, the signal 'b' must be true continuously during the entire period when
signal 'c’ is false, which lasts for exactly one clock cycle following the rise of 'a'.

property p_rose_throughout;

@(posedge clk) $rose(a) |-> b throughout !c [->1] ;
endproperty
assert property (p_rose_throughout);

Expert

Design a SystemVerilog assertion named "p_within_rst" that involves 6 signals (i.e., clk, rst n, a,
b, c, d). This assertion ensures that when signal ‘a’ falls (transitions from high to low) at the
positive edge of 'clk’, a specific sequence involving signals 'c' and 'd" must occur within a
defined window of time marked by signal 'b’ falling and then rising, provided that the reset
signal 'rst_n' is high (active). Additionally, this behavior is only checked when the reset signal
‘rst_n’ is high, ensuring that the assertion is disabled (does not evaluate or enforce the rule)
when 'rst_n' is low (reset condition).

property p_within_rst;
@(posedge clk) disable iff(!rst_n) $fell(a) |-> ((c [->2] ##1 d) within
($fell(b) ##[5:10] $rose(b)));
endproperty
assert property (p_within_rst);
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> Conclusions

« Automated SVA generation with LLMs and evaluated by formal checking.

« Improved the baseline by 58% for Pass@5 and 33% for Pass@10 through testing SLEG
with Sanechips Tech. in real IC projects.

» Future: Continue partnership with Sanenchips to expand LLM+FV design paradigm for other
generation tasks (e.g. SV/RTL/SystemC) and application scenarios (e.g., data bootstrapping,
enhanced prediction).
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