

Approaching Zero DPPM with Functional and Test Coverage Patterns Combined Methodology

Yuxin You, Siemens EDA, Beijing, China (*Man.you@siemens.com*) Qiang Gao, Siemens EDA, Beijing, China (*gao.qiang@siemens.com*) Gaurav Goel, Siemens EDA, Noida, India (*goel.gaurav@siemens.com*) Ricky Yang, Siemens EDA, Shanghai, China (*ricky.yang@siemens.com*) Arun Gogineni, Siemens EDA, Austin, USA (*arun.gogineni@siemens.com*)

Agenda

- Challenges of Achieving Zero Defects Parts per Million
- Challenges for Traditional ATPG Methodologies
- Proposed Functional and Test Coverage Patterns Combined Methodology
- Proposed DFT Flow
- Conclusions
- Q&A

Challenges of Achieving Zero DPPM

Challenges of Achieving Zero DPPM (Cont.)

• Quality Triangle

- DL(Defect level) = $DL=1-Y^{(1-T)}$, Y: Yield, T:testcoverage
- DPPM=DL* 106

DPPM	Test Coverage	Supposed Yield	
200	97.07%	00.220/	
100	98.53%		
50	99.27%	99.32%	
10	99.85%		

Challenges for Traditional ATPG Methodologies

• Test_coverage= #DT + (#PD* posdet_credit) /(#FU -#UT)

Augment test patterns with automated functional pattern coverage to achieve required coverage

Proposed DFT flow

• 1. Tessent ATPG Structure Test to generates structural patterns

- write_faults cpu_top_edt_stuck_stuck_basic.faults.mtfi -format mtfi -Replace -noeq -class AU class PT -class PU -class UO -class UC -class RE -class TI -class BL -class UU.
- write_ks_fdb -fusadb_name ./ Database/FaultGrade.fdb::TessentFaults

• 2. Function level Simulation to generate functional patterns

- > Evaluate circuit operation at the function level
- > Detect functional issues missed by structural testing

Complimentary fault engine solution – Utilizes strengths of simulation & emulation

Fault Simulation (concurrent)

- Advanced concurrent fault simulation of 1000s in parallel
- Best for IP/ block/subsystem simulations
- Native testbench (System Verilog, UVM)

Fault Emulation (Fast)

- Fast serial fault simulation at 1000X speed
- Best for long SoC level simulations
- Tests requiring full SW stack
- Supports STIL format

- *3. Functional Fault Injection Simulation* to evaluate how effectiveness of functional patterns to cover that faults that are not covered by ATPG patterns.
 - Step-1 : identify stimulus needed from full set of functional stimulus for given fault set o rank them using the total faults that can be injected
 - Step-2 : do actual fault grading using smaller set of stimulus

• Example run command of KaleidoScope

ido:	Scope \
	mode kmanager_distributed \
	kman_parallel 8 \
	top cpu_top \
	fusaini ./Inputs/fusa.ini \
	max_concurrent_fault 1000
	max_fanout 500000
	error_inject_inst cpu_top_cpu_top_stuck_chain_serial_v_ctl.cpu_top_inst \
	sim_qwave ./Inputs/qwave.f
	ini fault_db_name=./Database/FaultGrade.fdb::TessentFaults \
	ini write_fusa_db=true \
	ini fu <mark>sa_db_n</mark> ame=./Database/FaultGrade.fdb::KS_Results \
	ini o <mark>v</mark> erwrit <mark>e</mark> _session=true \
	dft_observe_points ./Inputs/observe_points.txt
	output_dir ./Outputs/stuck_chain_serial_qwave_db
	log_file ./Logs/stuck_chain_serial_qwave_db.log

• 4. Test Coverage Merge to improve test coverage

- DS (det_simulation) faults increased from 224897 to 226407
- > 1510 faults detected with the functional testcase, 0.03% test coverage improvement
- read ks fdb -fusadb name ./Database/FaultGrade.fdb::KS Results -fault class DS

	Fault Classes	Result after normal ATPG run		Results after merging the Austemper faults	
	l l l l l l l l l l l l l l l l l l l	#faults(total)	#faults(total relevant)	#faults(total)	#faults(total relevant)
	FU (full)	298702	294271	298702	295719
ĺ	UC (uncontrolled)	81 (0.03%)	same (0.03%)	53 (0.02%)	same (0.02%)
	UO (unobserved)	19 (0.01%)	same (0.01%)	19 (0.01%)	same (0.01%)
	DS (det_simulation)	<mark>224897</mark> (75.29%)	same (76.43%)	226407 (75.80%)	same (76.56%)
	DI (det_implication)	62081 (20.78%)	same (21.10%)	62081 (20.78%)	same (20.99%)
	PU (posdet_untestable)	5 (0.00%)	same (0.00%)	5 (0.00%)	same (0.00%)
	UU (unused)	4004 (1.34%)	same (1.36%)	4004 (1.34%)	same (1.35%)
	TI (tied)	368 (0.12%)	same (0.13%)	368 (0.12%)	same (0.12%)
	BL (blocked)	82 (0.03%)	same (0.03%)	82 (0.03%)	same (0.03%)
	RE (redundant)	1348 (0.45%)	same (0.46%)	1348 (0.45%)	same (0.46%)
	AU (atpg_untestable)	5817 (1.95%)	1386 (0.47%)	4335 (1.45%)	1352 (0.46%)
	Test coverage	97.98%	99.48%	98.49%	99.51%

A comprehensive, high-productivity DFT verification solution

More usages with Siemens EDA Questa Fault Sim

Fault Models

Stuck-At, Transition delay

Intra-Cell Bridge, Path delay, Cell-aware UDFM

Roadmap (Inter-cell bridging, Opens)

Applications

Functional pattern(s) coverage analysis

Functional pattern optimization

Burn-in coverage analysis

QFX with KaleidoScope Engine

Tessent Integration

Reads Tessent reports to identify fault candidates

Writes Tessent format for coverage merging

Supports Tessent UDFM format

Performance and Features

Concurrent Fault Simulation (Cores, Grid)

Stimulus grading

Good Machine Simulation w/ hierarchical support

Conclusions

• Innovative methodology integrates functional patterns with advanced test coverage strategies to enhance fault detection for low DPPM goals.

• New approach with only four steps.

- Senerate structural test patterns via Tessent ATPG and extract undetected faults in MTFI format.
- > Function level simulation to improve fault observability and propagation by leveraging high toggle rates stimulus.
- Fault injection simulation with a parallel concurrent fault propagation engine of KaleidoScope for efficient functional fault grading and analysis.
- Merge the existing coverage from ATPG and functional fault injection data by proactively addressing test coverage deficiencies early in the design phase

•A comprehensive, high-productivity DFT verification solution validated by Siemens EDA

