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« Verification accounts for over 50% development time.

- The engineer ratio of design to verification ranges
from 1:2 to 1:3.

Source: Harry Foster et. al.. The 2022 Wilson Research Group Functional Verification Study.
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Verification accounts for over 50% development time. - Debugging dominates the verification process.

The engineer ratio of design to verification ranges
from 1:2 to 1:3.

Source: Harry Foster et. al.. The 2022 Wilson Research Group Functional Verification Study.
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When the posedge of signal <clk> is detected and reset signal <rstn> is active, if <rstn> rises, then

implies <vld_out> equals to 1-bit binary number ©.

property vld out_reset;

@(posedge clk) disable iff(!rstn) $rose(rstn)|-> vld_out == 1'b0;

|
|
|
|
|
endproperty :
|
Assert_vld_out_reset:assert property (vld_out_reset) else $error(" unexpected <vld out> reset

|

|

I

behavior ")
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SVA (SystemVerilog Assertions) specifies the expected behavior under predefined conditions and captures
potential errors through real-time verification of their correctness.
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Advantage of Assertion:

* Early-Stage Error Detection
* Observability
* maintainability

-
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However, SVA writing is labor-intensive and error-prone,
agile SVA Generation is highly needed.

Source: Harry Foster et. al.. The 2020 Wilson Research Group Functional Verification Study.
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NLP-based SVA Generation

@ Natural I_’rarse If'rarse [T/ﬁ
e ree ree SVA
Natrual Processing (? G SVA
Language . ) . )
Description Matching Mapping

NLP-based approaches aim to develop translators that convert natural language verification requirements into
SVA code. Early approach employed NLP techniques to parse SVA natural language descriptions into parse
trees. These trees are then structurally matched to SVA templates, with key components like signals, conditions,

and actions being automatically segmented. Finally, predefined mapping rules populate these modular
components into template slots to generate SVA assertions.
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Disadvantages :

* Low generalization ability
* Limited abstraction-level of input

* Poor generative ability when faced with
complex descriptions

The parse trees of two sentences with the same
meaning but different expressions.[1]

[1]J. Zhao and I. G. Harris, “Automatic assertion generation from natural language specifications using subtree analysis,” in 2019 Design, Automation Test in Europe Conference Exhibition 8
(DATE), 2019, pp. 598-601.
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LLMs demonstrate comprehensive
intelligent and automated capabilities.
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Formal Verification
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We designed an end-to-end automated generation system from
SVA descriptions to SVAs, a LLM combined with customized
Chain of Thought (CoT) and Retrieval-Augmented Generation
(RAG), achieving high-quality SVA generation.
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Benchmark Construction
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Example Input Expected Output Correctness of
DeepSeek V3 with
RAG+CoT

When the posedge of signal <clk> is triggered, the @(posedge clk) (~init_state

result of the reduce and of not <init_state>and <a> & (old_we_1 &

Complex Logic should be true. where <a> is the reduce and of (ic_ram[{old_adr, 3'b001}]

<old_we_1> and the result of <ic_ram[{old_adr, == old_di[23:16]))) 75%

Nesting 3'h001}]> equal to the 23rd to 16th bit of <old_dis.

When the posedge of signal <wb_clk_i>is triggered = @(posedge wb_clk_i) disable

and the signal <wb_rst_i>is not active, if iff(wb_rst_i) Srose(wb_cyc_i
<wb_cyc_i>and <wb_std_i> both rise, then it && wb_std i) |=>
Complex Temporal implies nonoverlappingly that the negation of the ~Spast(wb_ack_o,1)[*1:5]
Expression value of <wb_ack_o> at past 1 cycle is true for at ##1 lwb_ack_o 60%

least 1 cycle is true, and <wb_ack_o> should be low
1 clock cycle later.
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Template of SVA Description:

We imposed no restrictions on sentence structure or phrasing during dataset construction, though designers
naturally exhibit preferred phrasing tendencies. Leveraging LLMs' strong generalization capabilities, simply
introducing new cases into the RAG framework enhances their parsing accuracy for novel expressions.

Ensuring Accuracy of LLM-Generated SVA:

Current LLM-based automated SVA generation remains an assistive tool. Engineers must verify the correctness of
generated assertions and employ iterative dialog refinement to obtain functionally valid SVAs.

Future Outlook:

This research demonstrates the significant enhancement of LLM assertion generation capabilities through the
RAG+CoT framework, particularly when leveraging large-scale datasets. As generation strategies become more
refined, verification-specific datasets expand, and LLMs evolve to the next generation, assertion pass rates will
progressively increase. This advancement will enable assertion-based verification with substantially reduced
engineering effort.
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Thanks for listening!
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