PPTHTH &)EE

s5vestr (accellerd) e AGNISYS

NNNNNNNNNNNNNNNNNNNNNNN SYSTEM DEVELOPMENT WITH CERTAINTY
SYSTEMS INITIATIVE

Automatic Generation of Implementation Layer
for Embedded System using PSS and System

)

SUDHIR BISHT
X !hQW _ ,

A\C'IQIQ o J
g

e
—
///
e
===

About us

@ Founded in 2007 in Boston, MA

Privately held, US owned
business.

Profitable since founded!

@ Trusted by 40+ customers
1000+ users worldwide
Over 80% Customer retention
rate

@

&

PPTHTHE & ER

Pioneer in providing design & verification
solutions for hardware/software interface

Worldwide offices

o

(@)

(@)

50+ Engineers Worldwide
24x7 Worldwide support
Sales Offices - USA, Europe,

Japan, S Korea, China, Taiwan &
India

R&D centers in USA and India

Agnisys Maximizes Productivity & PPTHHH KK

Eliminates Errors

RTL Designer
« Automatic Generation of SoC HSI:
frware (T @ i, o Synthesizable RTL
o UVM Register Abstraction Layer (RAL)
o Software models
Software @ (@)
Architect

Prototyping Documentation

Single Golden Specification across Teams
Techpub

Correct-by-Construction Output for Teams

Peace of Mind: No Errors introduced in HSI portion of SoC

Percentage of ASIC Project Time Spent in Verification

50%-60%
Median project time spent
i ification

Design Projects

Percentage of ASIC Project Time Spent in Verification
2010 ==2014 ==2018 e==2022

Source: Wison Research Group and Siemens EDA, 2022 Functional Verticaton STudy

Number of spins before production
Decline in first silicon success combined with increasing wafer and mask cost

50%

@

Wafer costs (vs 28nm):

v 4

Design projects

Mask costs (vs 28nm):

1 (FIRST
SILICON
SUGOESS) Number of required ASIC spins before production

2010 =2014 =2018 w2022

on Stucty

PPT 3} &R B

Biggest functional verification challenge

CREATING SUFFICIENT TESTS TO VERIFY THE DESIGN
(Coverage Closure)

KNOWING MY VERIFICATION COVERAGE
MANAGING THE VERIFICATION PROCESS
TIME TO ISOLATE AND RESOLVE A BUG
TIME TO DISCOVER THE NEXT BUG

DEFINING APPROPRIATE COVERAGE METRICS

20% 25%
Design Projects
FPGA mASIC

Most development time spent in verification
* However, respins per project still increasing

Greatest verification challenge (by far)...
creating sufficient tests

Source: Wilson Research Group 2022, courtesy Siemens
EDA

PPTHTH &)EE

SystemRDL & Agnisys Innovations

A wide range of special registers are
only supported by AGNISYS

» Agnisys Enhancements
AGNISYS - Special features for use by customers

« Constructs given by Accellera
SystemRDL SystemRDL 2.0 committee.
2.0 - Has many constructs so that user can
- create whole spec in less time.

-Some of the old construct that are already
SystemRDL been used in the industry.
1.0 « Includes preprocessor, components,
. limited special registers.

Multi - dim
array
More SW
access

Pre-
processor
enum

Memory Limited
component special
and much registers

more

constraint Building

UvM coverage blocks
Verification 9

constructs hdl_path

Special
Registers

HW/SW Interface of a Typical SoC

Memor
C/C++ o o y
Program £ g
- : O
oD o Sensors
S S
Assembly - -

}
[n] APB Slave

APB
Bridge
APB bus

$
APB Slave m]

O

Sensors

Full SoC now requires
HW/SW Interfacing
(HSI) Complex VIPs 1
and SW/HW Test
content

IP

Interrupts

Programmab

Programable
Registers

Programmable

PPTHTH &)EE

Challenges Development Teams Face with Sequences

~N

-Sequence is not clear or
well documented

- A sequence works on
one platform and not on
other

-No way to create the
same debug environment
on multiple platforms

N

Has this ever

happened to you?

. J/

Inconsistent definition
of Sequences

-In-exact definition
-Inconsistent
interpretation

«Incorrect implementation

-Industry Standards — IP-
XACT, SystemRDL,
RALF
-Custom formats — CSV,
Excel, XML
-IDesignSpec formats —
IDS-NG, IDSWord,
IDSExcel

. Sequences contain

Register data that can

be in any format:

Sequences are

-Architects/designers

plan them

-Design engineers
encode Verilog
functionality
-Verification engineers
write them in UVM or

PSS

NG

everywhere

J

An ldeal Solution

Describe the programming and test sequences of a device
and automatically generate sequences ready to use from an
early design and verification stage to post silicon validation
Centralize creation of sequences from a single specification
and generate various output formats for multiple SoC teams
— SV/UVM, PSS, C, CSV or Matlab
— PDF or HTML
Specify portable sequences for multiple IPs at a higher level
in-sync with the register specification
Use register descriptions in standard formats such as IP-
XACT, SystemRDL, RALF or leverage |IDesignSpec™
integrated flow to use the register data

Sequence constructs include loops, if-else, wait, arguments,
constant, in-line functions

PPTHTHE & ER

SEQUENCE

- UVM-SV

- Verilog for validation

- Automatic Test Equipment

- Firmware

- Matlab
DOCUMENTATION
- Excel

- HTML

PPT T &K E
Register Implementation in Hardware Design

* Characterized by a large number of control and Register: Block_b1_config
status registers- Address: 0xA0005001
Purpose: Configuration of the B1 block.

Fields : F1, F2
O Registers are important for making the chip/IP

configurable. “ M i

* A configurable chip/IP is more versatile, and
generates larger ROI.

Field: F2 Field: F1
-] Purpose: Turns Purpose: Turns
* Supported RegISter Buses : functionality F2 onfoff functionality F1 onfoff

access b " <
(® AMBA-AHB (O AVALON Qocp (O PROPRIETARY (O AMBA-AX A
QU TT——
O AMBA-AXMFULL O AMBA-APE (O AMBA3-AHB-lite O WISHBONE (O SPl-beta O 12C -beta Cl:‘ =

p

data 170

PPTHTHE & ER

SystemRDL (System Register Description Language)

accellera — Standardized by the SystemRDL Working Group.

https://www.accellera.org/activities/working-groups/systemrd|/

“Excerpt from “Introduction”
The SystemRDL language was designed specifically for describing and implementing registers and memory.

SystemRDL allows developers to automatically generate and synchronize register specifications in hardware design,
software development, verification, and documentation.

The purpose behind language standardization is to significantly shorten the development cycle for hardware designers,

hardware verification engineers, software developers, and document developers.
addrmap blockl {

reg myReg #(longint unsigned SIZE = 32, longint unsigned $P1 = 1)
intended to be applied for the following purposes Teduideh = STZE: Jjdgoomontaiion Jevel BEraneien
] . . ispresent= $Pl; //output level parameter
— RTL generation & Validation field {
} datal[SIZE-1]:; //parameter used in expressions
— Document b
: . myReg reg3z;
— Pass information to other tools such as debuggers nyReq §(.SIZE(16)) reglé; //Parameter overriding

}i

struct my_struct { //structures
string foo :
string descl;

}os

— Software development (Register info.)

https://www.accellera.org/activities/working-groups/systemrdl/

PPTHH MEE
The Accellera Portable Stimulus Standard

Scope : s _— Accellera’s PSS committee was formed to drive a
{inbegatian] Architect HW Analog SW Verification SW Test It)asltlajlltltcon o .
NN | Developer | Developer | Developer Engineer Engineer | ‘@001 | common standard for modeling stimulus that could be
Middleware o o 5 c
(Gaphic, Auco R e ported between simulation, emulation and fabricated
—— k0, S s s P silicon.
[) ¥ _
Bare Metal SW. ‘ Fadia ikt o This stimulus methodology could drive block level
i b B4 0 5
el | <= simulation as well as embedded software tests for SoC
—_— " ' 3 ! 3 designs.
o ‘ Tests Tests Tests Tests Tests
P Verification Environment _ For more detail of PSS, please visit Accellera PSWG
UML/SysML ‘ SystemC el ‘ co [l aws ‘ page.
Platform
Virtual Platform ‘ Simulation Emulation ‘ FPGA Prototype | Silicon Board ‘

Proposed Portable Stimulus Specification (Courtesy: Accellera Systems Initiative)

PPT 3} &R B
PSS

The Portable test and Stimulus Standard defines a specification for creating a single representation of
stimulus and test scenarios, usable by a variety of users across different levels of integration. With this
standard, users can specify a set of behaviours, from which multiple implementations may be derived.
e PSS has constructs for
o Modelling Data flow (Buffers, Streams, States)
o Modeling Behavior (Actions, Activities, Components, Resource, Pooling)
o Constraints, Randomization, Coverage
e PSS is useful for SoC high-level test scenario creation

A concept of defining Registers and Sequences has been introduced in PSS2.0. Currently, three
accesses are supported i.e., Read-Only, Read-Write, Write-Only.

IDS-Validate helps in generating the PSS register model through various inputs supported by IDS
such as SystemRDL, IP-XACT, IDS-NG, Word, Custom CSV etc

PPT 3} &R B

What does a common sequence specification need

Like pseudo code
Control flow

* Meta information

Register read/writes - Arguments
Signal or interface read/writes * Parameters
Ability to execute arbitrary transactions \éiﬂfnb'es
Deal with timing differently » Define
« A millisecond on the board takes a very long time to S|mulate » Macros

» Structures

Deal with hierarchy : |
- Design hierarchy IP/SoC SR ——— S— S :
« Sequence calling other sequences

Parallelism

« Sub-system or SoC Level

« Multiple interfaces at IP level

« Between Environment and the Device

PPTHTHE & ER

What does a sequence generation need

» Create a variety of output formats
 Flexibility in how Read/Writes are generated

» Output specific
« UVM : font door/back door / peek/poke
« C/C++ : Consolidated read/write
« Test/Validation : Multiple test sites — for testing multiple chips simultaneously
« Target platform may not support hierarchy, loops, variables

IDS-Validate (PSS Support)

e PSS 2.0 is a new* industry standard created by Accellera
e Agnisys is a working group member & contributed to standardization

Expertise in creating the Realization Layer
e Widest / Most comprehensive Register/Memory
definition
e Pioneer in Sequence/Functions for IP/SoC

Agnisys offers
e Use PSS (or Excel, Python, GUI (NG)) to create Golden
Spec for Sequences

e Generate C functions and UVM Sequences Functions Registers
Key Benefits Procedural Memory R/W
e Single Golden Source for Registers and Sequences Statements

reduces Time to Market, improves quality

Realization Layer

IP XACT
PSS . SystemRDL
files —> <):| YAML, XML
________________ Hlerarchlcal
Sequences & Register Map
Registers ,
I
1. Models VM C/C++ \l HTML Flow Chart
TL RAL Header PDF View
Reglsters Reg Abstraction Layer Registers Registers Sequences

2. Run Env |:> Verification (SV/UVM based) Validation (C/C++ based)

3. Tests —> 1. Automatic Reg tests 1. Automatic Reg tests
2. UVM based PSS tests 2. C based PSS tests
4. Misc ::> Custom outputs *Makefile, *main.c

(Velocity Template based)

PSS Compiler

Directory Structure

car_pg.pss
cars
car_registers.rdl
ethernst pss
ethernet
a ethemet ipxact
B
pwcntr pas
E. o
4!;“ pocntr.rdi
wu
(2 external_ip.pss
LI ext_ip
external_ip.idsng

system_top.pss

system_top.rdl

SystemRDL Input

PPTHTH &)EE

C Output

property chip (type=string: componsnc=addrmap:):
addrmap system top [
chip= True;
addrmap top_chip [
chip =true;
refpath="top_chip.idsng:top_chip";
1z
addrmap extrenal ip(
refpathe"elevator controller system.idsng:elevator™;
hE
addrmap pwctrl |
refpath = "power_controller.idsng:Machine power_contzroller™:

ip Top_chip:
al_ip external ip:
pwctrl pwotrls

return 02

PSS Input

UVM Output

extend component car_c {

import Car_ "'}i_‘:'.-IF:_.'E-.__'."-.T-"IJ.—'.:-: H

action car_MNVENC_Emable_clk_act
exec body {
target_car NVENC_Enable_clk_function();

action car_MWVENC_Reset_act|
exec body
target_car_WVENC_Reset_function(};

class uvm car_nvenc disable clk seq eXtends uvm reg_seguenced (UVIL Ssquenced (uvm_reg_item)) ;
‘uvm_object_utils({uvm car_nvenc_disable_clk_seq)

uvm_status_e status;
car_registers_block Im ;

function new({string name = "uvm car
super.new(nams) ;

endfunction
task body;

if(!Scast(mm, model)) begin

“uvm_error("Re =1 : ca ot cast object of
end
if (rm = null) begi
‘uvm_error("ca ified To I
return;
end
rm.CLK_OUT_ENB NVENC_CLR.CLR_CLK ENB NVENC.write(status, 'hl, .parent(this)):

Additional Automated Outputs Generated

e RAL Model, UVM, UVM sequences with
verification environment

e RTL

e PDF/HTML

e C tests & C sequences with validation
environment

e Headers

Conclusion PPTH X RH

The SoC specification defining the registers and memory can be written in SystemRDL format as well as in PSS 2.0
format released by Accellera recently.

Both SystemRDL and PSS powerful compilers have been written to generate various outputs such RTL, UVM, Headers
and documentation. There should be a way to generate custom tests for boards as well as UVM and UVM-C based
environments through a common specification. This provides a solution for firmware engineers to write and debug their
device drivers and application software. Therefore, PSS helps in the solution for SOC/IP teams who aim to cut down the
verification and validation time, through automatic generation of UVM and sequences which enables exhaustive testing of
memories and register maps.

This approach also unifies the creation of portable sequences from a golden specification. Sequences can be captured in
PSS, python, spreadsheet format, or GUI(NG) and Register models has been capture in system RDL and generate
multiple output formats for a variety of domains:

* UVM sequences for verification

» SystemVerilog sequences for validation

* C code for firmware and device driver development

* Specialized formats for automated test equipment (ATE)
» Hooks to the latest Portable Stimulus Standard (PSS)

» Documentation outputs such as HTML and flowchart

PPTHTH &)EE

Thank You

Agnisys, Inc.

G|

