ety (aceellera

NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

Catapult HLS & HLV Platform -
Enabling Agile & High Quality IC Design

Shanghai | September 20, 2023

Agenda

e HLS Introduction
e HLLS Design & Verification Flow

e Customer Success Stories

What is HLS 9

High—level synthesis (HLS) creates RTL implementations from abstract specifications described with
C, C++, SystemC, etc.

HLS is still hardware design
e HLS does NOT “translate” any working C++ code into a good HW
o« HLS does NOT turn a SW engineer into a HW designer

« HLS does NOT replace RTL designers, it empowers them

. C/C++/SystemC RTL . Gate—level netlist
Design Spec. > RTL Synthesis -

Clock & Technology SDC

Why HLS ? Time is Money

RTL

Verificati

Algorithm

Complexity)
on Costs

Time To
RTL. Reuse

Costs

Being six months late can lose
33% of lifetime profit

LOSS IN TOTAL PROFIT (%)

35%
30%
25%
20%
15%
10%
5%
0% A\

% In a 20% growth rate market, with 12% annual price erosion and a five-year total product life.
Source: McKinsey & Co.

Market Drivers for High-Level Synthesis

Key Markets have Significant Pressures for
New Designs

Time To Market with competitive QoR

Retarget I.P. from FPGA to SoC geometries

dutynduwo)

Handle late changing specifications

uoTssoxdwo)
pue 09pTIp ‘SUISS9J0J] o3eu]

Verification and debug cost

UOTIBO TUNUWO,)
TeNITe) Pu® YIprapueg YSIj

Traditional RTL Design Flow vs. Catapult HLS Design Flow

Floating Point Model Floating Point Model
Algorithm Algorithm
a Fixed Point Model Fixed Point Model Gt

'

Architecture Design

v
Micro—Architecture

RTL Design

RTL l

BT

Traditional Catapult HLS
RTL

HLS C++

i

9

UTeI)SUOD

Manual

Catapult Synthesis - Micro Architecture

Control

. . . . Modwe [Resource:regsse
User control over the micro—architecture implementation =@

7\ {?3?" Packing Mode: |[Register] :
e Parallelism, Throughput, Area, Latency (loop unrolling & pipelini = amsscos| 2oxs= Cs-Samplemm.ccs.ram_sync_dalport
_ccs_samp e_mem.Cccs_ram_sync_singlepol

« Memories (DPRAM/SPRAM/split/bank) vs Registers (Resource allocati — @swro=

E regs [8l[8] Interleave:
=@ main (1=1)

Explore MArchitectures with constraints(Not by changing the source cod@ i [

 Evaluate PPA alternatives for each design
e Memory access minimization

 Banking & interleaving

int mac(
char data[N],
char coef [N]
) {
int accum=0;
for (int i=0; i<N; i++)
accum += data[i] * coef[i]:;
return accum;

@]
[
=)
45
O
(¢D]
-
o
<=
O
[
<

Constraints

#-[3 Interface Iteration Count:

= run [Junroll
=3 Armrays

= gk regs:rsc (8x8)
| regs [8]8] o
= @m“|=n [¥|Pipeline
o aRIEY Initiation Interval:
&% MAC

Stall Mode: [flush

[FlLeops can be Merged
—>

f

—

Ly L) oL |

Catapult Synthesis - Scheduling (Pipelining)

Multi-objective scheduling
e Area/Latency driven data path scheduling
Arithmetic optimizations and bit-width trimming

Eliminates RTL technology penalty of I.P. reuse

250MHz / 4ns 500MHz / 2ns

d
<« >

~
-

for (int i=0; i<8; i++) {
tmp+=ali];
}

Technology Neutral
Description

FPGA or SLOW ASIC Faster Process
Delay of a 16bit add: 2.1 ns Delay of a 16bit add: 0.3 ns
Latency: 3 cycles Latency: 1 cycle

Cut Design/Verification Time and Cost

) Architectural Exploration ~_ First verified RTL

¥

Algorithm/Architecture HLS C Desigh (D@VéTSb RTL. Tests

High Level Verification%ﬁﬂ Debug and Signofft RTL

 RTL Verification

4

25 - 50% faster than traditional flow

N

Shift Left for Design/Verification

e Start verification with Algorithm/Architecture teams — NEW Job description High-Level
Verification Engineer

* Reduced verification costs by 80% time by 50%

e Reduce from 12 weeks to 2 weeks and eliminated separate verification engineering all together

Introducing the Catapult HLS Platform

High Quality RTL Synthesized from

C/C++/SystemC with Physical Awareness C/CH+/SystenC
HLS (call

DCG/Oasys for
Verification for C/C++/SystemC HLS Design Ph“”“”?

. . Awareness)
and Production flow into RTL

Low Power

IFL %)

C Design

Generate
VM

Reusable

Checker and

Catapult Code Coverage

Test Bench

PowerPro under—-the—hood for Best Power
Optimized RTL

Language Freedom - C++ | System C

SystemC Exploration &
Untimed, Loosely—timed, Implementation
Cycle—accurate - Control Logic &

Algorithms

Flexibility to use

the best language for

a team, project or

application

PowerPro Under—-the—hood

Integrated Early RTL Power Estimation with
PowerPro “under the hood”

Generate power optimized RTL with Catapult
Ultra

 Automatic Optimization with PowerPro Engine

 Converge rapidly on optimal solution

Only Catapult Ultra has this integrated
technology

SYSTEMC

Catapult High—-Level Verification Flow

C++/SystemC
HLS Design
(Assert & Cover)

v

Catapult
Design
Checker

C++/SysC/UV HLS C++/SysC Catapult
M Testbench Verification Coverage

t

Catapult Catapult
HLS Formal

|

I

|

| I
| Area, Timing &

b= ==p| Power Optimized

Properties in HLS
Deploy properties to catch issues early

Catapult supports Immediate Assertions and | #include <ac_assert.h>

Cover Properties in HLS C++ and SystemC | #pragma hls design top

uintleé alu(EintS a, uint8 b, opcode t opcode)
{
uintl6é r = 0;
switch (opcode) {
case ADD:
Catapult propagates assertions and cover = ;nmiﬁh
case SUB:
(a>=b); // no negative results
r = a-b;
break;
case DIV:
(b!'=0); // no divide-by-zero
r = a/b;
break;

properties from HLS source to RTL

Assertions in generated HDL
SVA, PSL or OVL

}

// Cover all of the possible opcodes
((opcode==ADD)) ;
((opcode==SUB)) ;
((opcode==D1IV)) ;

return r;

“Applying common RTL debug and verification

[e e e e e e e e e e e e e e e e

techniques to HLS design source”

Catapult Design Checker

Static and Formal analysis to find issues
early

Quickly and easily find coding bugs and errors

before synthesis or simulation

Some C++ language behavior not well defined or too

ambiguous for hardware Catapult Design Checker

e Leads to mismatches between C++ and RTL

e Difficult to debug in dynamic simulation

Combination of static ‘lint’ checks, Quality of
Results (QofR) checks, and formal properties
checking

e e.g. Out of bounds array read and writes (ABR, ABW)
and Uninitialized memory reads (UMR)

Generated RTL

“Clean HLS design source results in less debugging
of posy—HfLS RTL”

Catapult Code Coverage
Achieve Coverage Closure on HLS design

source
Bring RTL coverage into HLS world

P I T

Match coverage concepts from RTL

 Code coverage — statement, branch, focused
expression coverage (FEC)

o . = Total 81.14% 100% 92.18%
 Functional coverage — covergroups, coverpoints, i — _ _ oo
bins & crosses bus._if_inst 84% : 91.97%
conv2d_inst 80.66% 100% 91.17%
Coverage data written into UCDB
* Enables use of all Questa verification analysis bl ol S SR "
& management utilities | (e|[e] [=]

Covergroups

“Code coverage closure on HLS source translates 5 i 23 Ceer GOl 2 g $00 ===
MyCCoverGroup_1_inst 8 5 0 62.5%

into 80-85% out of box code coverage on RTL”

Automatic RTL Verification Environment

SCVerify/CoSim flow builds RTL functional test Original
environment Testbench

e Questa/ModelSim '
e NCSim | VCS-MX

Original C++/SystemC testbench is reused to Original
simulate the RTL design Algorithm

Transactors convert function calls to pin—level
signal activity in C++

Compare

Not typically used by verification team

Catapult Formal

Catapult Formal is a suite of verification Apps controlled by the Catapult
GUI or Catapult command TCL files.

e CFormal IMP : Synthesis constraint verification for memory access dependencies
e CFormal Idle : RTL verification of the synthetic Idle—detection logic

e CFormal Stall : RTL verification of Stall handshakes and wait controllers

e CFormal SLEC : C—to—RTL leaf module equivalence check

e +new Apps under construction (CCoverCheck and CFormalAssert)

OOOOO

Catapult
Formal

Incremental Synthesis & ECO Flow

Build an incremental solution from a reference solution
Apply reference data at appropriate HLS flow stages (automatic)

Continue with RTL ECO flow using new RTL

Obj ct ' Cycle o ShIring
Names : Data Data

Dynamic Variable Range Analysis Floating-point
design

Quantization is a process to find the
appropriate data accuracy, still satisfying the
algorithm performance

Value Range Fine Tune
Analysis Quantization

AC datatype (ac_fixed) supports dynamic Calculate Fixed-
(simulation based) value range analysis point Data Type

#include <ac_fixed.h>

int main(int argc, char *argv[]) Analyze SpeC|a|

{ Cases
ac_fixed<2,0,false> varA; // Available Value Range (min © : max ©0.75)
varA = 0.5;

. return 9; Validate

Quantized Design

A A | B G | D E: | F G H |) K L

1 |Declaration |L0cation Variable Value Change Count Overflow Count Modified Decl Allowed N Allowed hMin Max MinFrac Signed ¢
2| ac_fixed<128,64,true,AC_RND_INF,AC_SAT> testbench.cpp:24 801 0 ac_fixed<51,8,true,AC_RND_INF,AC_SAT> -9.22E+18 9.22E+18 -82.8384 82.8384 1.57E-13 signed

3 |ac_fixed<128,64,true, AC_RND_INF,AC_SAT> testbench.cpp:38 6400 0 ac_fixed<49,8,true,AC RND_INF,AC SAT> -9.22E+18 9.22E+18 -119.961 119.961 5.12E-13 signed

4 |ac_fixed<128,64,true,AC_RND_INF,AC_SAT> ac_fixed.h:407 i 0 -9.22E+18 9.22E+18 a 0 0 unsigned

5 |ac_fixed<128,64,true, AC_RND_INF,AC_SAT> polyphase_circular_class.h:16 198400 0 ac_fixed<49,8,true, AC_ RND_INF,AC SAT> -9.22E+18 9.22E+18 -119.961 119.961 5.12E-13 signed

6 |ac_fixed<128,64,true, AC_TRN,AC_WRAP> polyphase_circular_class.h:28 103200 0 ac_fixed<57,8,true, AC_TRN,AC_WRAP> -5.22E+18 9.22E+18 -83.9785 84.1397 2.36E-15 signed

7 |ac_fixed<128,64,true,AC_RND_INF,AC_SAT> polyphase_circular_class.h:28 672000 0 ac_fixed<49,8,true,AC_RND_INF,AC_SAT> -9.22E+18 9.22E+18 -119.961 119.961 5.12E-13 signed

8 |ac_fixed<128,64,true, AC_RND_ZERO,AC_SAT> polyphase_circular_class.h:55 800 0 -9.22E+18 9.22E+18 o 0 0 unsigned
9 |ac_fixed<128,64,true,AC_RND_ZERO,AC_SAT> ac_fixed.h:407 800 0 -9.22E+18 9.22E+18 a 0 0 unsigned

NVIDIA Research

— Catapult HLS Key to Optimize AI Inferencing for
Performance/Watt

AT/ML Inference SoC implemented entirely in
SystemC with HLS and Catapult

» -

“The whole RC18 chip'was designed by fewer

Enabled full SoC-level performance verification than ten engineers in six months, coded entirely in C++ using high-level
synthesis.”

o 30X RTL, <2.6% difference from RTL in cycle
count

Performance/Power and hits the mark
e 9.5 TOPS/watt in vanilla TSMC 16nm
e Scales to 128TOPS

,‘ m .-.-GF'EO-W ww

47.5 mm
2.5 mm

10X Productivity over manual RTL

e Spec—to—Tapeout in 6 months with < 10 engineers - P— > 3

111.6 mm?

0.52-1.1V

0.48-1.8 GHz

https://www.nextplatform.com/2019/09/03/nvidia-shows-off-tech-chops-with-rc18-inference-chip/
https://www.nextplatform.com/2019/09/03/nvidia-shows-off-tech-chops-with-rc18-inference-chip/

NVIDIA - Catapult HLS Key to Optimize Al Inferencing SIEMENS
for Performance/Watt lngenuity for Ufe

AlI/ML Inference SoC implemented
entirely with HLS and Catapult

ORDER OF MAGNITUDE LESS DESIGN

Performance/Power hits the mark e —— :

9.5 TOPS/watt in vanilla TSMC 16nm
Scales to 128TOPS

“The whole RC18 chip was designed by fewer

than ten engineers in six months, coded

10X Productivity over manual RTL
ty entirely in C++ using high-level synthesis.”

Design and Verification done in C++

- Bill Dally, Chief Scientist, NVIDIA

Growth from 12-19 seats Catapult
Hot Chips, Aug 2049

Partnering with Mentor for productization
Releasing libraries into open-source

Chips and Media for Al - First Time for Al Design and HLS SIEMENS

_ . i . _ l’ha,u\ui\‘y for Uife
Successfully delivered Deep Learning IP on first project with HLS

Evaluation Process

- Side by side teams; one for HLS, one for RTL W QQQ00 QQ%%?

« HLS team experienced designers but no HLS experience QRS o 2R oy O) L

- Catapult Korea AE support throughout was key " QU - "™
partnered with senior designer gb

Evaluation Results cWAVE100

+ HLS cut the block/IP design and verification time in half Host
: et N

Delivered critical FPGA customer demonstrator early
+ HLS found optimal power/performance not possible with RTL
+ RTL teams understand and are convinced of HLS

What’s Next
« HLS will be used on all new CV/DNN IP going forward
« New IP with Deep Learning for 4K to 8K upscaling

AXI Bus
———

Catapult HLS - More Customer Success Stories

Nokia - Catapult Helps Deliver §G Faster SIEMENS
to Multiple Carriers/Countries lingenvity for Ufe

5G is easily 10X the complexity of 4G

T — o
wil mw Specifications is still changing — Huge race to win!

m LN Trained over 150 Nokia engineers in HLS all over the world
iy
aad FRequied HLS enabled them to create new derivative FPGA designs —

Jiy

Finland to China, US, Asia — MUCH Faster than RTL
ASIC is coming next and FPGA HLS will be re-used

Resulting in $9-11.5M TCV for Catapult with ~2X growth
Interlock with TSS and Division key to growth

Horizon Robotics - Automotive-grade Al Processor SIEMENS
Ingesuity for tife

BPU Al Core Optimization With PowerPro, OFE by Catapult HLS

Evaluation Process
Optical Flow Engine Design/Architecture Consultation
+ C++ Design 15t, System C Version Followed for System Validation
Purpose
+ BPU PowerPro RTL Power Optimization throughout Design B
Cycles

Evaluation Results
- OFE Design & Verification Time cut by Half
- Enable Full System Validation based on SystemC TLM
Methodology
+ BPU Power Reduced by at least 10%
- Easy Iterations of RTL Modification based on Accurate and Highly
Implementable PowerPro Guidance
« Beat Stratus on Systemc HLS & PowerArtist on RTL Power
in Single Campaign

Contact

Published by Siemens Digital Industries Software
Wenbo Zheng

Front End Design Solution Group

Beijing

China

Mobile +86 155 0102 7338

E-mail wenbo. zheng@siemens. com

mailto:wenbo.zheng@siemens.com

