
Catapult HLS & HLV Platform -
Enabling Agile & High Quality IC Design

Agenda

● HLS Introduction

● HLS Design & Verification Flow

● Customer Success Stories

What is HLS ?

High-level synthesis (HLS) creates RTL implementations from abstract specifications described with

C, C++, SystemC, etc.

HLS is still hardware design

• HLS does NOT “translate” any working C++ code into a good HW

• HLS does NOT turn a SW engineer into a HW designer

• HLS does NOT replace RTL designers, it empowers them

Design Spec. Catapult HLS RTL Synthesis
C/C++/SystemC RTL

Clock & Technology SDC

Gate-level netlist

Why HLS ? Time is Money

Being six months late can lose

33% of lifetime profit

0%
5%

10%
15%
20%
25%
30%
35%

De
ve
lo
pm
en
t
Co
st
…

Pr
od
uc
t
Co
st
 9
%
(T
oo
…

Sh
ip
 P
ro
du
ct
s
Si
x…

LOSS IN TOTAL PROFIT(%)

* In a 20% growth rate market, with 12% annual price erosion and a five-year total product life.
Source: McKinsey & Co.

Market Drivers for High-Level Synthesis

Key Markets have Significant Pressures for

New Designs

Time To Market with competitive QoR

Handle late changing specifications

Verification and debug cost

Retarget I.P. from FPGA to SoC geometries

H
i
g
h

B
a
n
d
w
i
d
t
h

a
n
d

C
e
l
l
u
l
a
r

C
o
m
m
u
n
i
c
a
t
i
o
n

C
o
m
p
u
t
e
r

V
i
s
i
o
n

a
n
d

N
e
u
r
a
l

C
o
m
p
u
t
i
n
g

I
m
a
g
e

P
r
o
c
e
s
s
i
n
g
,

V
i
d
e
o

a
n
d

C
o
m
p
r
e
s
s
i
o
n

Traditional RTL Design Flow vs. Catapult HLS Design Flow

Floating Point Model

Fixed Point Model

Architecture Design

Micro-Architecture
Design

RTL Design

RTL Synthesis

Traditional
RTL

Algorithm
C++

Manual

Floating Point Model

Fixed Point Model

Architecture Design

HLS Synthesis

RTL Synthesis

Algorithm
C++

HLS C++

Automatic

Catapult HLS
c
o
n
s
t
r
a
i
n

t
s

RTLRTL

Catapult Synthesis - Micro Architecture
Control

User control over the micro-architecture implementation

• Parallelism, Throughput, Area, Latency (loop unrolling & pipelining)

• Memories (DPRAM/SPRAM/split/bank) vs Registers (Resource allocation)

Explore µArchitectures with constraints(Not by changing the source code)

• Evaluate PPA alternatives for each design

• Memory access minimization

• Banking & interleaving

+

x

x

x

x

+

+

A
r
c
h
i
t
e
c
t
u
r
e

C
o
n
s
t
r
a
i
n
t
s

+x

Catapult Synthesis - Scheduling (Pipelining)

Multi-objective scheduling

• Area/Latency driven data path scheduling

Arithmetic optimizations and bit-width trimming

Eliminates RTL technology penalty of I.P. reuse

Technology Neutral
Description

Faster Process
Delay of a 16bit add: 0.3 ns

Latency: 1 cycle

500MHz / 2ns

FPGA or SLOW ASIC
Delay of a 16bit add: 2.1 ns

Latency: 3 cycles

250MHz / 4ns

Cut Design/Verification Time and Cost

• Start verification with Algorithm/Architecture teams - NEW Job description High-Level

Verification Engineer

• Reduced verification costs by 80%, time by 50%

• Reduce from 12 weeks to 2 weeks and eliminated separate verification engineering all together

Traditional Development Time

25 – 50% faster than traditional flow

Introducing the Catapult HLS Platform

High Quality RTL Synthesized from

C/C++/SystemC with Physical Awareness

Verification for C/C++/SystemC HLS Design

and Production flow into RTL

Catapult Code Coverage

PowerPro under-the-hood for Best Power

Optimized RTL

Language Freedom - C++ | System C

SystemC

Untimed, Loosely-timed,

Cycle-accurate

Exploration &

Implementation

Control Logic &

Algorithms

Flexibility to use

the best language for

a team, project or

application

Teams may select

one language, but

company may use both

PowerPro Under-the-hood

Integrated Early RTL Power Estimation with

PowerPro “under the hood”

Generate power optimized RTL with Catapult

Ultra

• Automatic Optimization with PowerPro Engine

• Converge rapidly on optimal solution

Only Catapult Ultra has this integrated

technology

void func (short a[N],
 for (int i=0; i<N; i++) {
 if (cond)
 z+=a[i]*b[i];
 else

High-Level Synthesis

Power Analysis

Power Optimization

Verification

Catapult High-Level Verification Flow

Area, Timing &
Power Optimized

 RTL

C++/SystemC
HLS Design

(Assert & Cover)

HLS C++/SysC
Verification

Catapult
HLS

C++/SysC/UV
M Testbench

Static and Formal
methods to find bugs
prior to simulation

Ensure code/functional
coverage of HLS Code

Formal-based apps for
correctness and

confidence

Run in a wide variety
of environments

Verify post-HLS RTL
leveraging parts
of existing TB

Catapult
Formal

Catapult
Coverage

Catapult
Design
Checker

Properties in HLS
Deploy properties to catch issues early

Catapult supports Immediate Assertions and

Cover Properties in HLS C++ and SystemC

Catapult propagates assertions and cover

properties from HLS source to RTL

Assertions in generated HDL

SVA, PSL or OVL

“Applying common RTL debug and verification

techniques to HLS design source”

#include <ac_assert.h>

#pragma hls_design top
uint16 alu(uint8 a, uint8 b, opcode_t opcode)
{
 uint16 r = 0;
 switch(opcode) {
 case ADD:
 r = a+b;
 break;
 case SUB:
 assert(a>=b); // no negative results
 r = a-b;
 break;
 case DIV:
 assert(b!=0); // no divide-by-zero
 r = a/b;
 break;
 }

 // Cover all of the possible opcodes
 cover((opcode==ADD));
 cover((opcode==SUB));
 cover((opcode==DIV));

 return r;
}

Catapult Design Checker
Static and Formal analysis to find issues
early
Quickly and easily find coding bugs and errors

before synthesis or simulation

Some C++ language behavior not well defined or too

ambiguous for hardware

• Leads to mismatches between C++ and RTL

• Difficult to debug in dynamic simulation

Combination of static ‘lint’ checks, Quality of

Results (QofR) checks, and formal properties

checking

• e.g. Out of bounds array read and writes (ABR, ABW)

and Uninitialized memory reads (UMR)

“Clean HLS design source results in less debugging

of posy-HLS RTL”

HLS Design

Generated RTL

Ok?

y

n

Catapult Design Checker

Catapult HLS

Catapult Code Coverage
Achieve Coverage Closure on HLS design
source
Bring RTL coverage into HLS world

Match coverage concepts from RTL

• Code coverage - statement, branch, focused

expression coverage (FEC)

• Functional coverage - covergroups, coverpoints,

bins & crosses

HLS-aware code coverage

Coverage data written into UCDB

• Enables use of all Questa verification analysis

& management utilities

“Code coverage closure on HLS source translates

into 80-85% out of box code coverage on RTL”

Automatic RTL Verification Environment

SCVerify/CoSim flow builds RTL functional test

environment

• Questa/ModelSim

• NCSim | VCS-MX

Original C++/SystemC testbench is reused to

simulate the RTL design

Transactors convert function calls to pin-level

signal activity in C++

Not typically used by verification team

Original

Algorithm
HLS RTL

Original

Testbench

Transactor

Transactor

Compare

Catapult Formal

Catapult Formal is a suite of verification Apps controlled by the Catapult

GUI or Catapult command TCL files.

• CFormal IMP : Synthesis constraint verification for memory access dependencies

• CFormal Idle : RTL verification of the synthetic Idle-detection logic

• CFormal Stall : RTL verification of Stall handshakes and wait controllers

• CFormal SLEC : C-to-RTL leaf module equivalence check

• +new Apps under construction (CCoverCheck and CFormalAssert)

Incremental Synthesis & ECO Flow

Build an incremental solution from a reference solution

Apply reference data at appropriate HLS flow stages (automatic)

Continue with RTL ECO flow using new RTL

architect
Old

C++/SysC schedule extract
Old
RTL

New
C++/SysC

New
RTL

analyze,
compile

incr
compile

incr
architect

incr
schedule

incr
extractanalyze

Object
Names

Object
Names

Cycle
Data

Sharing
Data

Dynamic Variable Range Analysis

Quantization is a process to find the

appropriate data accuracy, still satisfying the

algorithm performance

AC datatype (ac_fixed) supports dynamic

(simulation based) value range analysis

Floating-point
design

Value Range
Analysis

Calculate Fixed-
point Data Type

Analyze Special
Cases

Validate
Quantized Design

Fine Tune
Quantization

NVIDIA Research
- C a t a p u l t H L S K e y t o O p t i m i z e A I I n f e r e n c i n g f o r
P e r f o r m a n c e / W a t t

AI/ML Inference SoC implemented entirely in

SystemC with HLS and Catapult

Enabled full SoC-level performance verification

• 30X RTL, <2.6% difference from RTL in cycle

count

Performance/Power and hits the mark

• 9.5 TOPS/watt in vanilla TSMC 16nm

• Scales to 128TOPS

10X Productivity over manual RTL

• Spec-to-Tapeout in 6 months with < 10 engineers

ORDER OF MAGNITUDE LESS DESIGN EFFORT

“The whole RC18 chip was designed by fewer
than ten engineers in six months, coded entirely in C++ using high-level
synthesis.”

-- Bill Dally, Chief Scientist, NVIDIA Hot Chips, Aug ’19

https://www.nextplatform.com/2019/09/03/nvidia-shows-off-tech-chops-with-rc18-inference-chip/
https://www.nextplatform.com/2019/09/03/nvidia-shows-off-tech-chops-with-rc18-inference-chip/

Catapult HLS - More Customer Success Stories

Contact
Published by Siemens Digital Industries Software

Wenbo Zheng

Front End Design Solution Group

Beijing

China

Mobile +86 155 0102 7338

E-mail wenbo.zheng@siemens.com

mailto:wenbo.zheng@siemens.com

