
Detecting Implementation Glitches in 
Gate-level Designs Using Advanced 

Hierarchical Techniques 

Hongsheng Pan, SiEngine Technology Co., Ltd
Kurt Takara, Siemens EDA
Yuxin You, Siemens EDA



About SiEngine Technology Co., Ltd 

Overall Solutions Supplier for High-end Automotive SoC
• Smart cockpit multimedia SoC
• ADAS L3+/L4
• In-vehicle central computing
• Center Gateway
• Automotive MCU



Different Kinds of CDC Paths

• Glitch Safe CDC Paths
– TX register drives the synchronizer directly 
– No glitch possible

• Combinational logic before synchronizers
– Potential glitches in combinational logic
– Synchronizers may sample wrong values

• Un-synchronized single-bit or multi-bit paths
– Potential glitches on unsynchronized CDC paths
– RX may sample wrong values

T
X

synchronizer

R
X

T
X

T
X

synchronizer

combo logic
gates

R
X

T
X

T
X

combo logic
gates

R
X



Gate-Level CDC Glitch Detection

• Glitches might be introduced 
during synthesis
– Timing optimization of synchronization 

logic
– Glitchy implementation of 

combinational logic
– Power/DFT circuit insertion may 

break valid CDC path
• Glitchy logic can be created by 

optimization of multiple combo-
logic blocks.

• Many glitches are detected on 
unsynchronized paths



Synthesis of DMUX path

• RTL = Conceptual gate logic
• Mux is used to prevent transmission 

of asynchronous signals

• Mux synthesized with other 
logic

• Mux transformed to 
AND/OR gates

• Mux select signal does not 
block the sampling of the TX 
data

m
ux

R
X

comb
o

comb
o

synchronizer

R
X

synchronizer

combo logic
gates



Gate-level CDC Glitch Example 
RTL Logic : Mux based 
synchronizer

Combo-logic implementation after 
synthesis

For given constants, logic reduces to 
(tx0|~tx0) which causes an asynchronous 
glitch



Gate-CDC Glitch ECO Example 
Manually corrected implementationCombo-logic implementation after 

synthesis

For given constants, logic reduces 
to (tx0|~tx0) which causes static-
1 glitch

For given constants, (tx0|~tx0) 
glitch blocked by additional AND 
gate



Clock Tree Glitch Detection

• Clock tree glitches will generate functional design errors
– Combinational Logic : [(clk_a && ( ! s) && clk_b && s && clk_a && 

clk_b)]
• Detect structural glitches in the clock tree

– Glitches detected from both clock and non-clock sources
– Glitch logic can be in same or different clock domain 



Reset Tree Glitch Detection

• Reset tree glitches will cause unexpected resets
– Combinational Logic : [(a && ( ! s) && b && s && a && b)]

• Detects structural glitches in the reset tree
– Glitches detected from both reset and non-reset sources
– Glitch logic can be in same or different reset domain 



Gate-level Glitch Analysis 
Challenges

• High setup effort
– Incomplete gate-level SDC constraints
– Difficult to convert RTL constraints

• Inadequate performance and capacity
– Flat analysis is too slow and cumbersome

• High debug effort
– Bit-blasted buses increase the number of crossings
– False glitches reported on non-functional paths

• Hierarchical challenges
– Difficult to generate lower-level constraints and abstract models



Flat Gate-level CDC Glitch 
Analysis

• Setup automation
– Designer provides RTL 

constraints
– Automatically converts RTL 

constraints
• CDC

– Identify high risk paths
• Glitch Analysis

– Identify structural glitches in 
CDC paths, clock paths, reset 
paths

– Formal analysis automatically 
eliminates false glitch 
structures

Gate-Level Setup Run
Refine setup

Gate-Level CDC Run CDC 
Results

Refine CDC Results

Glitch 
Results

Glitch Analysis
do gcdc_glitch/glitchcheck_run.tcl

Glitch Analysis
do gcdc_glitch/glitchcheck_run.tclGlitch Analysis

Gate-level 
design

Gate-level 
constraints

RTL 
constraints

RTL2gate
mapping



Proposed Hierarchical Glitch 
Methodology

• Hierarchical setup automation
– Designer provides RTL constraints (optionally: RTL-gate name 

mapping file)
– Automatically generates partition-level constraints and run 

scripts
• Partition-level glitch analysis

– Identifies glitchy structures in design partition
– Partition-level abstract model automatically generated

• Top-level glitch analysis
– Uses partition-level abstract models
– Identifies glitchy structures in top-level integration logic



Hierarchical Setup Automation

• Step 1: Specify modules for abstraction
• Step 2: Run glitch analysis setup

– Generates constraints & run script
– Optional: Specify additional block-level constraints

• Step 3: Run hierarchical script
– Runs block and top-level analysis
– Automatically generates block abstract models

• Step 4: Review results
– Step 4a: Review block-level results
– Step 4b: Review top-level results

13

Top

Block 
Level
Glitch

Analysis

Top

Top-level 
setups

Propagate 
top-level 
setups

Top-level Glitch 
Analysis

Results

Top-down flow

Block 
Level
Glitch

Analysis

Block 
Level
Glitch

Analysis

Block 
Level
Glitch

Analysis

Block 
Level
Glitch

Analysis



Case Study
• Large automotive IVI 

application subsystem 
targeted at ASIL B

• 11 clock groups and 15 
reset groups

ISO26262-11 - Guidance on 
ActivitiesISO26262-5:2018 

Requirement
Technique/Measure

7.4.4 Verification of 
hardware design 

HDL Simulation
Formal Verification
Requirement Driven Verification

7.4.4 Verification of 
hardware design 

Functional and structural coverage-driven 
verification (with coverage of verification goals 
in percentage)

7.4.4 Verification of 
hardware design 

Automatic verification of coding rules ("Coding 
style") by code checker tool.

7.4.1.6 Modular design 
properties (testability)

Design for testability (depending on the test 
coverage in percent)

7.4.1.6 Modular design 
properties (testability) 

Proof of the test coverage by ATPG (Automatic 
Test Pattern Generation) based on achieved test 
coverage in percent

7.4.4 Verification of 
hardware design

Perform cross clock domain check on gate level 
netlist, before and after test insertion



Results
Estimated gate complexity CDC signals CPU run time

Flat glitch analysis 41M gates 27K 9h 1m

Hierarchical glitch analysis 4h 55m

Setup 3h 58m

Partition analysis 4M gates 10K 27m

Top-level analysis 1M gates 16K 30m

Incremental TAT 27m-57m

• Hierarchical incremental TAT 4X-20X faster than flat 
analysis



Hierarchical Glitch Analysis 
Advantages

• Runtime improvements over flat analysis
– Faster turn-around-time over flat analysis
– Concurrent partition analysis

• Automated setup reduces designer effort
– Automatic import for RTL constraints
– Automatic generation of partition constraints and run scripts

• Easier debug
– Partitioning enables more focused glitch results review

• Reduced debug and triage effort
– Advanced formal techniques eliminate noise and false violations

• Improved results management & progress tracking
– Manage review and debug with status constraints
– Enables project and design reviews



Summary

• By transforming the RTL directives and waivers to the 
gate-level
– Reused the hard work that have been performed at the RTL

• Advanced gate-level glitch analysis required for tape-out
– Identifies structural glitches introduced by implementation (after 

RTL signoff)
– Advanced formal methods eliminate noise and false glitches
– Identify the exact paths contributing to the glitch scenario 

• With hierarchical multi-stage and multi-processing
– Faster turnaround time with parallelized analysis
– Easy to use with setup automation
– Easy to debug with partition-focused results


