

 Beyond UVM

Feng Li (李枫)
hkli2012@126.com
Sep 20, 2023

An indie developer from China：
u The main translator of the book «Gray Hat
 Hacking The Ethical Hacker's Handbook,
 Fourth Edition» (ISBN：9787302428671)
 & «Linux Hardening in Hostile Networks,
 First Edition» (ISBN: 9787115544384)

u Pure software development for ~15 years
 (~11 years on Mobile dev)

u Actively participating Open Source
 Communities:
 https://github.com/XianBeiTuoBaFeng2015/MySlides

u Recently, focus on infrastructure of
 Cloud/Edge Computing, AI, IoT,
 Programming Languages & Runtimes,
 Network, Virtualization, RISC-V, EDA,
 5G/6G…

Who Am I

 Agenda
I. Background
 Technology Stack
 Testbeds
II. Enhancing Cocotb
 Comparison
 Potential Enhancements
III. Project CocotbII
 Cocotb with emerging Python-based DSLs
 Cocotb with Dlang
 Cocotb with AI
 Chisel Verification with Cocotb?
IV. Wrap-up

1) Technology Stack
1.1 FOSS EDA

I. Background

 https://en.wikipedia.org/wiki/Comparison_of_EDA_software
 https://semiwiki.com/wikis/industry-wikis/eda-open-source-tools-wiki/
 https://fossi-foundation.org/
 https://ieeexplore.ieee.org/document/9398963
 https://ieeexplore.ieee.org/document/9398960
 https://ieeexplore.ieee.org/document/9336682
 https://ieeexplore.ieee.org/document/9105619
 …

1.2 Evolution of HDLs
u https://en.wikipedia.org/wiki/Hardware_description_language
u https://hdl.github.io/awesome/items/
u .

 Typical eDSLs
u .

u Finally convert to Verilog/VHDL (https://en.wikipedia.org/wiki/Source-to-source_compiler)

I. Background

Host Language Typical eDSLs

 Haskell Bluespec, Clash...

 Scala Chisel, SpinalHDL...

 Python Amaranth/FHDL, PyGears...

1.3 LLVM
u https://en.wikipedia.org/wiki/LLVM

u https://llvm.org
u .

I. Background

Source: http://blog.k3170makan.com/2020/04/learning-llvm-i-introdution-to-llvm.html

1.3.1 MLIR
u https://mlir.llvm.org/
 Multi-Level Intermediate Representation

u Motivation

I. Background

From LLVM to MLIR
 u .

 MLIR: “Meta IR” and Compiler Infrastructure

I. Background

Source: https://hanchenye.com/assets/pdf/Gatech_CIRCT_Slides_Hanchen.pdf

1.3.2 CIRCT
u https://circt.llvm.org/
 Circuit IR Compilers and Tools
u Motivation

u https://circt.llvm.org/docs/Charter/

I. Background

Dialects and how they interact & PyCDE
 u .

I. Background

Source: https://circt.llvm.org/includes/img/dialects.svg

Source: "Compilers for Domain-Specific Accelerators", Hanchen Ye,
 Gatech ECE6100/CS6290 guest lecture.

https://circt.llvm.org/docs/PyCDE/

1.4 GraalVM
u https://en.wikipedia.org/wiki/GraalVM
u https://www.graalvm.org/
 A high-performance JDK distribution designed to accelerate the execution of applications written in Java
 and other JVM languages like JavaScript, Python, and a number of other popular languages.

u https://github.com/oracle/graal/blob/master/truffle/docs/Languages.md

I. Background

Source: https://static.packt-cdn.com/downloads/9781800564909_ColorImages.pdf

Source: “Turning the JVM into a Polyglot VM with Graal”, Chris Seaton, Oracle Labs.

 Meta-Circular A hybrid of static & dynamic runtimes
 .

u https://github.com/oracle/graal/tree/master/sulong
u A Universal High-Performance Polyglot VM.

I. Background

Source: https://chrisseaton.com/truffleruby/jokerconf17/

Source: https://ics.psu.edu/wp-content/uploads/2017/02/GraalVM-PSU.pptx

Source: “Adopting Java for the Serverless world”, Vadym Kazulkin, JUG London 2020.

Current release and roadmap
u https://www.graalvm.org/release-calendar/

 JDK 21
u https://openjdk.org/projects/jdk/21/

I. Background

JDK 19

1.5 Python
u https://en.wikipedia.org/wiki/Python_(programming_language)

Ranking
u PYPL IEEE Spectrum

I. Background

Source: http://pypl.github.io/PYPL.html Source: https://spectrum.ieee.org/top-programming-languages/

u GitHut RedMonk

u Is Python the Top1 programming language in AI?

I. Background

Source: http://https://madnight.github.io/githut/#/pull_requests/2023/2

Source: https://redmonk.com/sogrady/2023/05/16/language-rankings-1-23/

1.5.1 Implementations
u https://wiki.python.org/moin/PythonImplementations
u You may refer to our previous talk "A survey of current Python implementations" at PyCon China 2021

and the upcoming follow-ups.
u …

I. Background

1.5.1.1 CPython (Official)
 u https://www.python.org/

Bottlenecks of current CPython implementation
u No JIT (Just in time) compiler

u GIL (https://en.wikipedia.org/wiki/Global_interpreter_lock)
u …

I. Background

Make CPython Faster
 u Plan from the Father of Python
 https://thenewstack.io/guido-van-rossums-ambitious-plans-for-improving-python-performance

u https://www.zdnet.com/article/python-programming-we-want-to-make-the-language-twice-as-fast-
says-its-creator/

I. Background

u The “Shannon Plan”

I. Background

Source: https://github.com/markshannon/faster-cpython/blob/master/plan.md

Source: https://github.com/markshannon/faster-cpython/blob/master/plan.md

https://github.com/markshannon/
https://github.com/faster-cpython/
https://www.python.org/dev/peps/pep-0659/
…

1.5.1.2 GraalPy
u https://www.graalvm.org/python/
u https://github.com/oracle/graalpython
 A Python 3 implementation built on GraalVM.

u Benefits

I. Background

u Performance

III. Project CocotbII

Source: https://www.graalvm.org/python

1.5.1.3 RustPython
u https://rustpython.github.io/

u https://github.com/RustPython/RustPython
u Support WASI!
u Built-in support for any platform that support by Rust toolchain.
u RustPython has a very experimental JIT compiler that compile Python functions into native code.

u Benefits

I. Background

1.6 Hardware Verification
u .

Hardware Verification Language (HVL)
u https://en.wikipedia.org/wiki/Hardware_verification_language

I. Background

 Source: http://uvm.io/blog/2019/04/accelerated-uvm

1.7 UVM
I. Background

u https://en.wikipedia.org/wiki/Universal_Verification_Methodology

…

I. Background
u .

u https://ieeexplore.ieee.org/document/9195920
u https://www.accellera.org/community/uvm/
u The latest version of UVM is 1.2, and 2.0 is on the way.
 https://www.accellera.org/downloads/standards/uvm
u https://www.accellera.org/downloads/standards/uvm
u https://www.accellera.org/downloads/drafts-review
u https://en.wikipedia.org/wiki/SystemVerilog

 Source: https://verificationacademy.com/cookbook

1.8 Vlang
u https://github.com/coverify-org/vlang-docs
 Next Generation Verification Language that base on

I. Background

 Source: https://fdocuments.in/document/vlang-flyer.html?page=2 (Date Post 28-Dec-2015)

 Top Down Verification Stack:

 Vlang vs SystemVerilog vs SystemC:
 https://fdocuments.in/document/vlang-flyer.html?page=2 (Date Post 28-Dec-2015)
 Just as a reference since a little out of date…

 For more details, you may refer to our report “D-based Next Generation Verification Language” and its
 update.

I. Background

 Source: https://dvcon-proceedings.org/wp-content/uploads/introduction-to-next-generation-verification-language-vlang-presentation.pdf
 (DVCon Europe 2014)

 Embedded UVM:
 http://uvm.io/

I. Background

1.9 Cocotb
u https://www.cocotb.org/
 A Coroutine based Cosimulation TestBench environment for verifying VHDL and Verilog RTL
 using Python.

 For more details, you may refer to our previous
 talk "Cocotb: a Swiss Army Knife for hardware
 verification" at PyCon China 2022 and the
 upcoming follow-ups.

I. Background

 Workflow:

I. Background

…

…

Source: https://docs.cocotb.org/en/stable/

…

 Extension:
 https://docs.cocotb.org/en/stable/extensions.html

 https://github.com/cocotb/cocotb/wiki/Further-Resources

I. Background

1.10 PyH2
u https://github.com/pymtl/pymtl3/
 PyH2 creatively Adopts PBT(Property-based Testing) for software to test hardware. It combines PyMTL
 (a unified Python framework for open-source hardware modeling, generation, simulation and verification)
 with Hypothesis(a PBT framework for Python software and creates a property-based testing framework
 for hardware, https://github.com/HypothesisWorks/hypothesis).

I. Background

Source: “A New Era of Open-Source Hardware”, Christopher Batten, Cornell University.

1.11 Chisel
u https://www.chisel-lang.org/
u https://github.com/chipsalliance/chisel3

 FIRRTL
u https://github.com/chipsalliance/firrtl-spec
 Flexible Internal Representation for RTL.
u https://github.com/chipsalliance/firrtl

 Treadle
u https://github.com/chipsalliance/treadle
 Chisel/Firrtl Execution Engine.

Rocket Chip Generator
u https://github.com/chipsalliance/rocket-chip

I. Background

Source: http://www.imm.dtu.dk/~masca/chisel-book.html

 Tool flow of the Chisel ecosystem:

I. Background

Source: http://www.imm.dtu.dk/~masca/chisel-book.pdf

1.12 SpinalHDL
u https://github.com/SpinalHDL/SpinalHDL

u https://spinalhdl.github.io/SpinalDoc-RTD/
u https://github.com/SpinalHDL/VexRiscv
…

I. Background

Cocotb in SpinalHDL
u .

I. Background

1.13 Corundum
u https://github.com/corundum/corundum/
 Open source FPGA-based NIC and platform for in-network compute.
u Block Diagram

Testing
u .
…

I. Background

Source: https://github.com/corundum/corundum/

1.14 ESSENT/RepCut
u https://github.com/ucsc-vama/essent/
 Essential Signal Simulation Enabled by Netlist Transformations
 A high-performance RTL simulator generator which operates on hardware designs in the form of FIRRTL.
 The secret of ESSENT is to represent hardware designs as directed graphs so that the classic simulation
 approaches could be simplified. Even compared with Verilator, ESSENT can still have performance
 advantages at various optimization levels.

I. Background

Source: “ESSENT: A High-Performance RTL Simulator”, Scott Beamer et al, WOSET 2021.

 Repcut:
 https://github.com/ucsc-vama/essent/tree/repcut
 A parallel version of ESSENT that enabled by replication-aided partitioning approach (cuts the circuit into
 balanced partitions with small overlaps).

I. Background

Source: “RepCut: Superlinear Parallel RTL Simulation with Replication-Aided Partitioning”,
 Haoyuan Wang and Scott Beamer, ASPLOS 2023.

2) Testbeds
u HW/SW
 Testbed1: Intel NUC X15 LAPAC71H(32GB DDR5) with Fedora 38(Linux Kernel 6.3.11/6.4.15);
 Testbed2: Raspberry Pi 4 (8GB LPDDR4) with Fedora 37(Linux Kernel 6.3.8/6.4.12);
 Testbed3: VisionFive 2(8GB LPDDR4) with Debian 12(Linux Kernel 5.15).

I. Background

1) Comparison
 From official guide:

II. Enhancing Cocotb

 From the theses and papers:

 Source: "UVM TESTBENCH IN PYTHON: FEATURE AND PERFORMANCE COMPARISON WITH SYSTEMVERILOG IMPLEMENTATION”,
 Miikka Sinervä, master’s thesis 2023.

II. Enhancing Cocotb

 Source: "UVM TESTBENCH IN PYTHON: FEATURE AND PERFORMANCE COMPARISON WITH SYSTEMVERILOG IMPLEMENTATION”, Miikka Sinervä, master’s thesis 2023.

II. Enhancing Cocotb

 From AI’s perspective:

 Source: “Reinforcement Learning Made Affordable for Hardware Verification Engineers”,
 Alexandru Dinu and Petre Lucian Ogrutan, Micromachines 2012.

II. Enhancing Cocotb

 From the trend:

 Source: https://blogs.sw.siemens.com/verificationhorizons/2022/11/21/part-6-the-2022-wilson-research-group-functional-verification-study/

II. Enhancing Cocotb

 Source: https://blogs.sw.siemens.com/verificationhorizons/2022/12/26/strongpart-10-the-2022-wilson-research-group-functional-verification-study-strong/

2) Potential Enhancements
2.1 New Python Runtimes
2.1.1 SpinalHDL
Testbed1
u Comparison

 With Linux Kernel 6.3.11: time-consuming for Compile and Test of SpinalHDL (on dev branch with last
 commit c5553fcd7cdf05edd6d35fb2424115c3654528b7) with CPython+OpenJDK and GraalPy+GraalVM.

II. Enhancing Cocotb

Time-consuming CPython 3.11.4 + OpenJDK 17.0.7 (s) GraalPy 3.10.8 + GraalVM CE(v23.1.0 dev release
20230609 for Java 20) (s)

 Compile 45 49

 Test 325 407

 With Linux Kernel 6.4.15: time-consuming for Compile and Test of SpinalHDL (on dev branch with last
 commit 2fdc3aadfc859bbfcf0fb559658606f3dbe4f705) with Cpython+OpenJDK and GraalPy+GraalVM.

II. Enhancing Cocotb

Time-consuming CPython 3.11.5 + OpenJDK 17.0.8 (s) GraalPy 3.10.8 + GraalVM CE(v23.1.0 dev release
20230817 for Java 21) (s)

 Compile 2 (?) 48

 Test 227 383

…

Failed to run due to an issue of
SBT, a workaround as below:

Gradually move to Mill or Bloop.

…

Testbed2
u Comparison

 With Linux Kernel 6.4.12: time-consuming for Compile and Test of SpinalHDL (on dev branch with last
 commit 2fdc3aadfc859bbfcf0fb559658606f3dbe4f705) with CPython+OpenJDK and GraalPy+GraalVM.

II. Enhancing Cocotb

Time-consuming CPython 3.11.5 + OpenJDK 17.0.8 (s)
GraalPy 3.10.8 + GraalVM CE(v23.1.0 dev release

20230817 for Java 21) (s)

 Compile 649 Similar issues as Testbed1 and CPython+OpenJDK

 Test 14517 Similar issues as Testbed1 and CPython+OpenJDK

Coredump

A workaround:
disable parallel testing

2.1.2 Corundum
u Comparison

 On Testbed1 with Linux Kernel 6.3.11: time-consuming of testing Corundum (on master branch with last
 commit 56c89640e0deb8083a4b899b2e7c344c52f89053) with CPython+OpenJDK and GraalPy+GraalVM.

 On Testbed1 with Linux Kernel 6.4.15: time-consuming of testing Corundum (on master branch with last
 commit ed4a26e2cbc0a429c45d5cd5ddf1177f86838914) with CPython+OpenJDK and GraalPy+GraalVM.

II. Enhancing Cocotb

Time-consuming CPython 3.11.4 + OpenJDK 17.0.7 (s)
GraalPy 3.10.8 + GraalVM CE(v23.1.0 dev release

20230609 for Java 20) (s)

 Test
 (run with tox, venv)

 4012.37
 (setup[33.03]+cmd[3979.34] seconds)

 3916.22
 (setup[15.08]+cmd[3901.11] seconds)

Time-consuming CPython 3.11.5 + OpenJDK 17.0.8 (s) GraalPy 3.10.8 + GraalVM CE(v23.1.0 dev release
20230817 for Java 21) (s)

 Test
 (run with tox, venv)

 3914.69
 (setup[15.03]+cmd[3899.66] seconds)

 Infeasible

 Test
 (run without tox)

 4125.86
 4170.97(enable verbose) N/A

Issues
u run without tox
 pytest -n auto [--verbose]

 but

 hack the shebang of pytest script with that of GraalPy and RustPython:
 Various issues will occur to block the test, especially for RustPython, we are still trying to resolve
 them…

II. Enhancing Cocotb

2.2 Alternatives to GHDL
2.2.1 Try to replace GHDL with NVC in the future
 1)

 2) NVC is still not as mature as GHDL…

 3) Options for GHDL and NVC:
 https://gritbub-ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#options

 https://www.nickg.me.uk/nvc/manual.html

II. Enhancing Cocotb

2.2.2 Re-implement GHDL by SPARK
 What is SPARK:
 SPARK is a high-level computer programming language consisting of a well-defined subset of Ada. Like
 Ada before it, SPARK was designed for the development of high-integrity software used in systems where
 predictable and highly reliable operation is essential. SPARK uses a language feature known as “contracts”
 to specify components in a form that is suitable for static verification using formal methods.
 “From the perspective of programming language capabilities, the paradigms are very similar to C and C++,”
 said Dhawal Kumar, a principal software engineer at NVIDIA and one of their first SPARK users. “SPARK is
 an imperative programming language. You can write procedure-oriented or object-oriented code, and
 there are other facilities for programming in the large.”

 https://github.com/AdaCore/spark2014

II. Enhancing Cocotb

 Source: https://www.adacore.com/uploads/techPapers/222559-adacore-nvidia-case-study-v5.pdf

II. Enhancing Cocotb
 Reduces development costs:Reduces Development Costs

 Source: https://www.adacore.com/nvidia

2.3 Evaluate the support of RepCut
 1) ESSENT/RepCut are written in Scala and using SBT for build. So it can also run on GraalVM like Chisel
 and SpinalHDL. A typical flow using the tool will: use ESSENT to generate head file from the Firrtl input,
 then write a C++ harness for the emitted code, compile everything, and finally run the simulation;

 2) ESSENT/RepCut still need developer to manually write C++ harness to generate the simulator, so the
 developers need to know both Scala and C++. Shall we use Python-based DSL to re-implement it for
 better developer experience and more easily integrated with Cocotb? Let’s further discuss them in
 another paper “Python-based emerging DSLs for FOSS EDA” of mine @ DVCon China 2023;

 3) During practicing ESSENT/RepCut on Testbeds, we found that it lacks of detailed user guide and there
 are some mistakes in old tests that need to be updated.

II. Enhancing Cocotb

2.4 Al-assisted Cocotb
2.4.1 VeRLPy

II. Enhancing Cocotb

u https://github.com/aebeljs/VeRLPy

Testing
u .
…

https://github.com/openai/gym https://github.com/Farama-Foundation/Gymnasium

Inheriting CocotbEnv
u .

II. Enhancing Cocotb

 Source: https://github.com/aebeljs/VeRLPy

Architecture & Design
u .

II. Enhancing Cocotb

Source: “VeRLPy: Python Library for Verification of Digital Designs with Reinforcement Learning”, Aebel Joe Shibu et al, 2021.

Comparison of coverage and actions chosen during the 1K iterations
u .

II. Enhancing Cocotb

Source: “VeRLPy: Python Library for Verification of Digital Designs with Reinforcement Learning”, Aebel Joe Shibu et al, 2021.

What is it
u Under development (to be open-sourced in 2024)
 Next generation Cocotb from us by re-design and re-implement it in various ways,
 and come with the enhancements that mentioned in section II.

III. Project CocotbII

1) Cocotb with emerging Python-based DSLs
u The key ideas are in another paper “Python-based emerging DSLs for FOSS EDA” of mine @

DVCon China 2023.

III. Project CocotbII

2) Cocotb with Dlang
u Rewrite the native code in Cocotb(mainly C++) with , and more…

III. Project CocotbII

2.1 RISCV-DV
u https://github.com/chipsalliance/riscv-dv

III. Project CocotbII

eUVM
u https://github.com/chipsalliance/riscv-dv/blob/master/euvm/README.md

u https://github.com/coverify/euvm/releases

III. Project CocotbII

For more details of ESDL
and eUVM, you may refer
to our report
“D-based Next Generation
Verification Language” and
its update.

3) Cocotb with AI
u Extend Cocotb to support extensions for AI and Distributed Computing, and a customized

project Ray (you may find it in another paper “Python-based emerging DSLs for FOSS EDA”
of mine @ DVCon China 2023.

u …

III. Project CocotbII

4) Chisel Verification with Cocotb?
u A long-term goal…

III. Project CocotbII

IV. Wrap-up
u More software development methods together with AI are being introduced into
 hardware design verification and deeply integrated. development methods
together with AI are being introduced into hardware design verification and deeply
integrated;
u Our effort to try to enhance Python-based verification framework such like
 Cocotb in various ways shows that it still has great potential for further
 improvement and may be brought to more FOSS EDA projects in the near future.

u It is not surprisingly that Python-centric one-stop toolchain will gradually
 becoming mainstream in FOSS EDA. together with AI are being introduced into hardware
design verification and deeply integrated;
u Is it time to thank UVM and say goodbye?

 Source: https://olofkindgren.blogspot.com/2022/10/its-time-to-to-thank-uvm-and-say-goodbye.html

