2023
sveer (accellera
H1NA SYéTEM-S INIfIATIVE

DESIGN AND VERIFICATION ™
CONFERENCE AND EXHIBITION

Shanghai | September 20, 2023

........

Beyond UVM

Feng Li (Z=1X)
hkli2012@126.com
Sep 20, 2023

%
o ke
8 IRIEEEe.,
= __ EXREmamen.
% BEMK. WHHERRAR FRA
%

El

rravey NETOMEERAGE K
W SRS

HACKING

ynical Hackers
The €

£nwEn B R

¥

wEmETETe

Linux B5fil 28

Linwe Hardening in Hostile Networks

»

»

An indie developer from China:

¢ The main translator of the book «Gray Hat

Hacking The Ethical Hacker's Handbook,
Fourth Edition» (ISBN: 9787302428671)
& «Linux Hardening in Hostile Networks,
First Edition» (ISBN: 9787115544384)

Pure software development for ~15 years
(~11 years on Mobile dev)

Actively participating Open Source
Communities:
https://github.com/XianBeiTuoBaFeng2015/MySlides

Recently, focus on infrastructure of
Cloud/Edge Computing, Al, loT,
Programming Languages & Runtimes,
Network, Virtualization, RISC-V, EDA,
5G/6G...

Agenda

. Background
N Technology Stack
o Testbeds
ll. Enhancing Cocotb
Comparison
Potential Enhancements
lll. Project Cocotbli
O Cocotb with emerging Python-based DSLs
0 Cocotb with Dlang
|
|

Cocotb with Al
Chisel Verification with Cocotb?

IV. Wrap-up

1) Technology Stack
1.1 FOSS EDA

n https://en.wikipedia.org/wiki/Comparison_of EDA_software
https://semiwiki.com/wikis/industry-wikis/eda-open-source-tools-wiki/
https://fossi-foundation.org/
https://ieeexplore.ieee.org/document/9398963
https://ieeexplore.ieee.org/document/9398960
https://ieeexplore.ieee.org/document/9336682
https://ieeexplore.ieee.org/document/9105619

1.2 Evolution of HDLs

* https://en.wikipedia.org/wiki/Hardware_description_language
* https://hdl.github.io/awesome/items/
L 2
Typical eDSLs
L 2
Host Language Typical eDSLs
Haskell Bluespec, Clash...
Scala Chisel, SpinalHDL...
Python Amaranth/FHDL, PyGears...
. inatty convert to Veritog/VHDL (https://en.wikipedia.org/wiki7/Source-to-source_compiler)

https://en.wikipedia.org/wiki/LLVM
LLVM is a set of compiler and toolchain technologies,] which can be used to develop a front end for any
programming language and a back end for any instruction set architecture, LLVM is designed around a

|Ianguage-independent intermediate representation (IR][that serves as a portable, high-level assembly language
that can be optimized with a variety of transformations over multiple passes.“"

https://llvm.org

Front end . Optimizer §g mm Back End
LLWM
" IR .

ss, LoopPass

Source: httn://blog.k3170makan.com/2020/04/learnine-llvm-i-introdution-to-llvm.html

1.3.1 MLIR

* https://mlir.llvm.org/
Multi-Level Intermediate Representation

The MLIR project is a novel approach to building reusable and extensible compiler infrastructure. MLIR aims
to address software fragmentation, improve compilation for heterogeneous hardware, significantly reduce
the cost of building domain specific compilers, and aid in connecting existing compilers together.

2 2 Motivation

MLIR is intended to be a hybrid IR which can support multiple different requirements in a unified
infrastructure. For example, this includes:

« The ability to represent dataflow graphs (such as in TensorFlow), including dynamic shapes, the
user-extensible op ecosystem, TensorFlow variables, etc.

« Optimizations and transformations typically done on such graphs (e.g. in Grappler).

Ability to host high-performance-computing-style loop optimizations across kernels (fusion, loop

interchange, tiling, etc.), and to transform memory layouts of data.

« Code generation “lowering” transformations such as DMA insertion, explicit cache management,
memory tiling, and vectorization for 1D and 2D register architectures.

Ability to represent target-specific operations, e.g. accelerator-specific high-level operations.

Quantization and other graph transformations done on a Deep-Learning graph.

Polyhedral primitives.

Hardware Synthesis Tools / HLS.

From LLVM to MLIR
* cu%/;c.'gﬁgwbéi .. ~>| Clang AST w

switt > SwitAST —>| SIIR |

Rust > RustAST —>| MRIR | = @

Julie 5[JuliaAST —>{ JuiaIR |

Fortran—)-[Flang AST]—’[ERR IR J m

e Different back-ends demand customized IR for optimization
e DSAs even cannot use LLVM for generating back-end codes and demand their

own IR for code generation

Severe Fragmentation: IRs have different implementations and “frameworks”

MLIR: “Meta IR” and Compiler Infrastructure

C, C++, ObiC, —
CUDA, o;;snc]:a_,..."{ Clang AST J—)[CIR Dialect

MLIR

swit > Swit AST —>{ SIL Dialect

)
|
Rust > RUStAST |—{ MIRDialect | ~ @ < —
J
)

|
Julia > JuliaAST —>{ Julia Dialect
(

DSA-Specific

Forian->| Flang AST —>| EIR Dialect i

e Design and implement dialect
MLIR is a “Meta IR” and e Optimization and transform inside of a dialect
compiler infrastructure for: > Conversion between different dialects

e Code generation of dialect

Source: https://hanchenye.com/assets/pdf/Gatech _CIRCT_Slides_Hanchen.pdf

1.3.2 CIRCT

* https://circt.llvm.org/
Circuit IR Compilers and Tools
L 2 Motivation

The EDA industry has well-known and widely used proprietary and open source tools. However, these tools
are inconsistent, have usability concerns, and were not designed together into a common platform.
Furthermore these tools are generally built with Verilog (also VHDL) as the IRs that they interchange.
Verilog has well known design issues, and limitations, e.g. suffering from poor location tracking support.

The CIRCT project is an (experimental!) effort looking to apply MLIR and the LLVM development
methodology to the domain of hardware design tools. Many of us dream of having reusable infrastructure
that is modular, uses library-based design technigues, is more consistent, and builds on the best practices in
compiler infrastructure and compiler design techniques.

By working together, we hope that we can build a new center of gravity to draw contributions from the
small (but enthusiastic!) community of people who work on open hardware tooling. In turn we hope this will
propel open tools forward, enables new higher-level abstractions for hardware design, and perhaps some

pieces may even be adopted by proprietary tools in time.
* https://circt.llvm.org/docs/Charter/

Dialects and how they interact & PyCDE

* e g e https://circt.llvm.org/docs/PyCDE/
Polygeist _Pmih - - SV/VHDL

iy © Python Chisel
[one [m] L | \ i
. ; _ FIRRTL
' PyCDE Parser
FIRRTL

Moore MIR [Comb. eq']

CIRCT Core
Dialects
N
= * CIR
| ExportVerilog | | Arcilator | ‘ ExpontSystemC | I].I.hd—mm | Verllog CIRCT

T T Exporter
Verilog

Source: "Compilers for Domain-Specific Accelerators"”, Hanchen Ye,

Software APL |} Gatech ECE6100/CS6290 guest lecture.

| (eg pyiestiom |

Source: https://circt.llvm.org/includes/img/dialects.svg

1.4 GraalVM

* https://en.wikipedia.org/wiki/GraalVM
2 https://www.graalvm.org/

A high-performance JDK distribution designed to accelerate the execution of applications written in Java
and other JVM languages like JavaScript, Python, and a number of other popular languages.

CIC++
Java on Truffle (Espresso)
Javaseript
Ruby
Java R 7 ==
rototype a new language
Kotlin Pyiin ro——

Prototype a new language in Java

Groovy

Parser and language work to build Parser and language work to build

syntax tree (AST), AST Interpreter syntax tree (AST)
scala Write a “real” VM Execute using AST interpreter
In C/C++, still using AST interpreter, People start using it
spend a lot of time implementing And it is already fast
runtime system, GC, ...
Graal Compiler and Tooling People start using it

eople complain about performance

Define a bytecode format and
write bytecode interpreter
Performance s still bad

Write a JIT compiler

Improve the garbage collector

JVMCI (JVM Compiler Interface)
JEP 243

JVM (Hotspot) Source: “Turning the JVM into a Polyglot VM with Graal”, Chris Seaton, Oracle Labs.
https://static.packt-cdn.com/downloads/9781800564909_Colorimages.pdf

https://github.com/oracle/graal/blob/master/truffle/docs/Languages.md

Source:

L 2

Meta-Circular

Product Adoption of a Metacircular JVM Architecture

Metacircular JVM Metacircular JVM

Java
Research

Development Context—

Product

Tech Transfer Opportunity ————————

less more

Copyeight © 2013, Oracle andior its affihates. All aghts reserved

Source: https://chrisseaton.com/truffleruby/jokerconf17/

A hybrid of static & dynamic runtimes

R native

libraries

Node.js
native libs
Ruby/Rails
native libs

Ruby R LLVM .bc
Interpreter Interpreter Interpreter

JavaScript

application

JavaScript
libraries

Node.js

Ruby
application

Ruby gems
& libraries

Rails
JavaScript
Interpreter

Java

Truffle API application

JavaVM Runtime
Threads / Scheduler | Filesystem '_ Network GC/heap Code cache

s
ORACLE Conpright © 2017, Orace nclor s afiates. Al ights rserved |

Source: https://ics.psu.edu/wp-content/uploads/2017/02/GraalVM-PSU.pptx

Graal
compiler Compiled

code snippet

« Precompile core parts of application, but still allow extensibility!

Graal VM on HotSpot Graal VM on SubstrateVM

Source:

https://github.com/oracle/graal/tree/master/sulong
A Universal High-Performance Polyglot VM.

“Adopting Java for the Serverless world”, Vadym Kazulkin, JUG London 2020.

Current release and roadmap

* https://www.graalvm.org/release-calendar/

JDK 21

* https://openjdk.org/projects/jdk/21/

430:
431:
4309:
440:
441:
442:
443:

String Templates (Preview)

Sequenced Collections

Generational ZGC

Record Patterns

Pattern Matching for switch

Foreign Function & Memory API (Third Preview)
Unnamed Patterns and Variables (Preview)

|444:

Virtual Threads|

445:
446:
448:
449:
451:
452:
453:

Unnamed Classes and Instance Main Methods (Preview)
Scoped Values (Preview)

Vector API (Sixth Incubator)

Deprecate the Windows 32-bit x86 Port for Removal
Prepare to Disallow the Dynamic Loading of Agents

Key Encapsulation Mechanism API

Structured Concurrency (Preview)

JDK 19

405:

Record Patterns (Preview)

422:
424:
425:

Linux/RISC-V Port
Foreign Function & Memory API (Preview)
Virtual Threads (Preview)

426:
427:
428:

Vector API (Fourth Incubator)
Pattern Matching for switch (Third Preview)
Structured Concurrency (Incubator)

1.5 Python

*

https://en.wikipedia.org/wiki/Python_(programming_language)

Ranking

*

PYPL
Worldwide, Sept 2023 :

Rank Change Language Share 1-year trend

[1 Python 27.99 % +0.1 %|
2 Java 15.9 % -1.1%
3 JavaScript 9.36 % -0.1 %
4 C# 6.67 % 0.4 %
5 C/C++ 6.54 % +0.3 %
6 PHP 491 % 0.4 %
71 R 4.4 % +0.2 %
8 TypeScript 3.04 % +0.2 %
9 M Swift 2.64 % +0.6 %
10 Objective-C ~ 2.15 % +0.1 %

Source: httn://vvpl.ecithub.io/PYPL.html

IEEE Spectrum
Top Programming Languages 2023

Click a button to see a differently weighted ranking

Jobs Trending

Python 1

B+ 0.538
C 0.4641
Javaseript
c
saL
2
TypeScript

HTML 0.139

Source: https://spectrum.ieee.oreg/tonp-broecramming-lansuages/

L GitHut RedMonk

RedMonk Q123 Programming Language Rankings

Year Quarter ~~ 1 JavaScript
2023 2 Cip, 2 Python

5 C+t. I
- ava
AR Objective-Wift - Ruby 3
Number of languages: 50 . VElE e . TypeScript 4 PHP
o ‘owe)
Matlab . 7 woShell 5 Ct
el So 6 CSS
. i . X Assembly Haskell
d GCC Machine Description .
Ranking Programming Language Percentage (YoY Change) YoY Tren o foovy Rust 7 TypeScript
s
1 Python 17.355% osry | ColdFuggg une Fi ojure 7 C++
Fortr Julia R b
ASP 9 Ruby
2 Java 11.387% (o ziz) . e EriargofieeScript . 10 C
cheme
BT b ~ - GLSL
3 Go 10.877% (+1574%) o Tel . Snlidiwocaml
4 Cr 9.094% (0 01%) Raggh| Verilggmma isp
| Mathematica Smarty
) fquid fnbet Emacs Lisp
5 JavaScript 9.542% (0 868%) v FreeMarker Syatemvorio
oq
) WebAssembly R DA
6 TypeScript 7.673% (-0988%) Raku i
Sypalitalk S
7 PHP 5.086% (0 178%) i Mol S BitBake
PostScript BSQCH- Vala it
8 c 4.615% (osie%) A s%&?wm i
PureScript
9 Ruby 4.494% (-0286%) v IRREon Ballerina HeL
Yean Hack
10 C# 3.270% -0 111%) Jsannet?stro s ,
. . . : i : i Starlark L
Source: http://https://madnight.github.io/githut/#/pull_requests/2023/2 sar e L
6 3’0 BID

E’D
Popularity Rank on GitHub (by # of Projects)

Source: https://redmonk.com/sogrady/2023/05/16/language-rankings-1-23/
* Is Python the Topl programming language in Al?

1.5.1 Implementations

* https://wiki.python.org/moin/Pythonlmplementations

* You may refer to our previous talk "A survey of current Python implementations" at PyCon China 2021

and the upcoming follow-ups.

1.5.1.1 CPython (Official)

Bottlenecks of current CPython implementation
* No JIT (Just in time) compiler

* GIL (https://en.wikipedia.org/wiki/Global_interpreter_lock)
2

Make CPython Faster

* Plan from the Father of Python
https://thenewstack.io/guido-van-rossums-ambitious-plans-for-improving-python-performance

Q*(.GN 20}

Francesca | @frlazzeri Guido van Rossum (he/him) e

* https://www.zdnet.com/article/python-programming-we-want-to-make-the-language-twice-as-fast-
says-its-creator/

\lslgefseiate EIa=ali A g FE SN =Relel=e [S)V/=1 [o]s121ES Who contribute to the development of CPython,

including Brett Cannon, Steve Dower, Guido van Rossum, Eric Snow, and Barry Warsaw — all

veterans in the Python core developer community.

The “Shannon Plan”
* Posted to GitHub and python-dev last October
» github.com/markshannon/faster-cpython

*Based on experience with “HotPy”, “HoyPy 2”
*Promises 5x in 4 years (1.5x per year)

* Looking for funding

Source: https://github.com/markshannon/faster-cpython/blob/master/plan.md

The stages to high performance

Stage 1-- Python 3.10
The key improvement for 3.10 will be an adaptive, specializing interpreter. The interpreter will adapt to types and values during execution,
explaiting type stability in the program, withaut needing runtime code generation.

Stage 2 -- Python 3.11

This stage will make many improvements to the runtime and key objects. Stage two will be characterized by lots of "tweaks", rather than any
“headline” improvement. The planned improvements include

« Improved performance for integers of less than one machine word

* Improved peformance for binary operators.

® Faster calls and returns, through better handling of frames.

* Better object memory layout and reduced memory management overhead

& Zero overhead exception handling

* Further enhancements to the interpreter

« Other small enhancements.
Stage 3 -- Python 3.12 (requires runtime code generation)
Simple "JIT* compller for small regions. Compile small regions of specialized cade, using a relatively simple, fast compiler.

Stage 4 -- Python 3.13 (requires runtime code generation)
Extend regions for compilation. Enhance compiler to generate superior machine code

Source: https://github.com/markshannon/faster-cpython/blob/master/plan.md

https://github.com/markshannon/
https://github.com/faster-cpython/
https://www.python.org/dev/peps/pep-0659/

1 5.1.2 GraalPy

*

https://www.graalvm.org/python
https://github.com/oracle/graalpython
A Python 3 implementation built on GraalvVM.

GraalPy, the GraalVM Implementation of Python

GraalPy is an implementation of the Python language on top of GraalVM. A primary goal is to support PyTorch,
SciPy, and their constituent libraries, as well as to work with other data science and machine learning libraries from
the rich Python ecosystem. GraalPy can usually execute pure Python code faster than CPython, and nearly match
CPython performance when C extensions are involved. GraalPy currently aims to be compatible with Python 3.10.
While many workloads run fine, any Python program that uses external packages could hit something
unsupported. At this point, the Python implementation is made available for experimentation and curious end-
users. We welcome issue reports of all kinds and are working hard to close our compatibility gaps.

Benefits

z 03 B

High Performance Interoperability Managed Execution

GraalPy optimizes your workload across Get access to multiple language ecosystems Reduce risks by running native extensions in
language boundaries and tools out of the box a managed mode

lll. Project Cocotbll

Performance
On average, GraalPy is 3 4x faster than CPython.

Cpython Jython GraalPy

Geomean speedup over CPython on the Python Performance suite

(Mote that Jython can only run a subset of the benchmarks due to the missing Python 3 support)

Source: https://www.graalvm.org/python

1.5.1.3 RustPython

. https://rustpython.github.io/

(e RustPython

An open source Python 3 (CPython >= 3.11.0) interpreter written in Rust &)

- @y
l’ Python
+
mmhon — Python embedded in Rust apps
+
MWebAssemhly - Python on the Web
https://github.com/RustPython/RustPython
Support WASI!

Built-in support for any platform that support by Rust toolchain.
RustPython has a very experimental JIT compiler that compile Python functions into native code.

L K 2 R 2

Hardware Verification

’ How does it impact the Hardware Verification domain? Traditionally, hardware and software are
designed and developed in isolation. In an ASIC hardware design scenario, an IP team codes the RTL,
and verifies it using SystemVerilog powered UVM testbenches before handing off the IP to the SoC
integration team. An essential part of the IP -> SoC handoff is the UVM test suit that is required to be run
at the SoC or at a subsystem level to make sure that the IP integration is seamless

RTLIP
= SYSTEMVERILOG
0 Bl ot I R UVM VIP ___..[' -
HW IP DEVELOPER SOC INTEGRATOR

A similar work-flow is undertaken by software teams. A software IP (or library) developer passes on a set
of tests to the application development team to make sure that the SW IP works without glitches in the
application/system development environment.

SW LIBRAR
SOFTWARE =
Uy TESTS . oy
SW LIBRARY DEVELOPER SYSTEM INTEGRATOR

FPGA based Hardware Accelerator technology requires a complete re-look at how verification is done
today, and how it needs to evolve. Since a hardware accelerator integrates tightly with the processor, a
lot more hardware-software coverification is obviously required.

Source: http://uvm.io/blog/2019/04/accelerated-uvm

Hardware Verification Language (HVL)
. https://en.wikipedia.org/wiki/Hardware_verification_language

https://en.wikipedia.org/wiki/Universal_Verification_Methodology

The Universal Verification Methodology (UVM) is a standardized methodology for verifying integrated circuit designs. UVM is derived mainly from the OVM (Open
Verification Methodology) which was, to a large part, based on the eRM (e Reuse Methodology) for the e Verification Language developed by Verisity Design in 2001. The UVM
class library brings much automation to the SystemVerilog language such as sequences and data automation features (packing, copy, compare) etc,, and unlike the previous

methodologies developed independently by the simulator vendors, is an Accellera standard with support from multiple vendors: Aldec, Cadence, Mentor Graphics, Synopsys,
Xilinx Simulator(XSIM).

History [edit]

In December 2009, a technical subcommittee of Accellera — a standards organization in the electronic design automation (EDA) industry — voted to establish the UVM and
decided to base this new standard on the Open Verification Methodology (OVM-2.1.1),['] a verification methodology developed jointly in 2007 by Cadence Design Systems and
Mentor Graphics.

On February 21, 2011, Accellera approved the 1.0 version of UVM.I21 UVM 1.0 includes a Reference Guide, a Reference Implementation in the form of a SystemVerilog base class
library, and a User Guide.[?]

_Deﬁnitions [edit]

» Agent - A container that emulates and verifies DUT devices

s Blocking - An interface that blocks tasks from other interfaces until it completes

s DUT - Device under test, what you are actually testing

s DUV - Device Under Verification

e Component - A portion of verification intellectual property that has interfaces and functions.

e Transactor - see component

e Verification Environment Configuration - those settings in the DUT and environment that are alterable while the simulation is running
e VIP - verification intellectual property

Examples
Bus ; Test Stimulus
UCDB | ;

: UART

& Code N J o= ' Sequences
DSP & Coverage register :

'Fum:tlcnal | L @ DUT/ Connection 73

SoC & Coverage | Verification IP

-, Y —— driver seq
Learn Analyze Close

interface

mon AP

config cov

scoreboard

Analysis / Checking

Base Class Library

Source: https://verificationacademy.com/cookbook

* https://ieeexplore.ieee.org/document/9195920

* https://www.accellera.org/community/uvm/

* The latest version of UVM is 1.2, and 2.0 is on the way.
https://www.accellera.org/downloads/standards/uvm

* https://www.accellera.org/downloads/standards/uvm

* https://www.accellera.org/downloads/drafts-review

. https://en.wikipedia.org/wiki/SystemVerilog

*

https://github.com/coverify-org/vlang-docs
Next Generation Verification Language that base on E

Vlang Features at a Glance

Multicore Vlang enables concurrent program-
ming. End user can fine-tune the number
of concurrently running threads at module
level. Vlang also enables concurrency at
a higher abstraction by allowing multiple
simulators running in parallel.

Constrained Randomization Full blown and effi-
cient. Concurrency enabled.

UVM Compliance Word-to-word translation of
SystemVerilog UVM. More efficient and
user-friendly due to generic programming.

Object Oriented Programming Support for func-
tion/operator overloading.

Safety and Productivity Automatic Garbage Col-
lection. Exception Handling. Unittests.

Systems Programming Allows low level access to
hardware resources. Allows embedded as-
sembly language.

Interface with other Languages Full blown C++
interface. VHPI/VPI bindings with VHDL and
SystemVerilog.

Licensing Provided free under open source boost
license. Vlang UVM library is available under
Apache? license.

Source: https://fdocuments.in/document/viang-flver.html?page=2 (Date Post 28-Dec-2015)

Verification with Vlang

Even as the chip complexity keeps increasing, we continue to rely on
same old RTL methodology to design our chips. As a result the abstrac-
tion gap between the design and the specification is increasing exponen-
tially.

Vlang attempts to bridge this gap by providing you a high productivity
and high performance verification environment.

%her Productivity H| er Performance

=1 SystemC VLANG i s you start hel PS you cover

E . . g - -

@ w

o =

E Verilog systemVerllog O

. -
& VHDL
PRODUCTIVITY & SAFETY = TIME & EFFORT &

Higher Productivity means that you take less time in building your veri-
fication infrastructure and higher performance means that your regres-
sion runs much faster.

If you have ESL as part of your SoC development flow, there are addi-
tional reasons that you should use Vlang to verify your ESL medels. Vlang
suppoerts much better integration with C++ compared to SystemVerilog.
Vlang is ABl compatible with C/C++. Vlang also allows you to call any
method (including virtual methods) on C++ objects right from Vlang
without any boilerplate code. In comparison SystemVerilog DPI inter-
face is limited to C language. As a result any interface between SystemC
and SystemVerilog tends to be highly inefficient.

Yet another advantage is that Vlang is free and open source just like your
SystemC simulator.

Top Down Verification Stack:
System Verilog integrates tightly with RTL;
Vlang with System Level

» Vlang is built on top of D Programming Language which
provides ABI compatibility with C/C++
» Vlanginterfaces with RTL using DPI

» DPI overhead is compensated by parallel execution of
testbench

» Vlang offers zero communication overhead when
integrating with Emulation Platforms and with Virtual
Platforms

DUT Simulation Testbench Simulation

IL- L1 ‘ |

SystemVerilog Simulation

DPI
uvmMm

SystemVerilog

RTL

System Level

D Language

Viang

Uvm
DPI1 /VPI /VHPI

E

S
D

L

Universal Verification Methodology

Mailbox and Thread Communication Constructs

Discrete Event Simulator Synchronized Constrained

Ports and Channels Data Containers | Randomization

Events and Threads Queue and Packer

Hierarchy and Elaboration Bit/Logic Vector

D Programming Language

Source: https://dvcon-proceedings.org/wp-content/uploads/introduction-to-next-generation-verification-language-vlang-presentation.pdf

(DVCon Europe 2014)

Vlang vs SystemVerilog vs SystemC:

https://fdocuments.in/document/vlang-flyer.htm|?page=2 (Date Post 28-Dec-2015)
Just as a reference since a little out of date...

For more details, you may refer to our report “D-based Next Generation Verification Language” and its

update.

O=Z2rr<

Embedded UVM:

http://uvm.io/
SoC FPGA Spawn your own Emulation Platform for $100

:n"‘:;‘;"‘d UVM Testbench Create your own SoCFPGA based Emulator for $100 and upto 100X speedup, with an Embedded
uvM testbench running on HPS and DUT mapped on FPGA.
DUT mapped
on FPGA

Run UVM Tests with Vivado and with GHDL

Opensource and Free IEEE uvM 1.0 port complete with Constrained Reandomization, released

under Apache2/Boost license

Co-Simulate your DUT with Device Drivers

LLVM powered native compilation on ARM and other embedded processors, with runtime

Footprint small enough tolrun UVYM on Raspberry Pl and Beaglebone)

Deploy UVM Testbenches on Software Stack
LLVM powered native compilation on ARM and other embedded processors, with runtime

Footprint small enough to run UVM on Raspberry Pl and Beaglebone.

wigger] Scale your Testbench to Multicore Servers

Events o

)

/k i The first and yet the only UVM implementation that lets your testbench run on multiple cores.
Scheduler

Thread

Pool of Worker Threads

Lets your testbench scale on Multicore server machine.

1.9 Cocotb

*

https://www.cocotb.org/

A Coroutine based Cosimulation TestBench environment for verifying VHDL and Verilog RTL

using Python.

cocotb is all about verification productivity. Verification is software, and by writing verification code in Python, verification engineers have access to all the goodness that

Key benefits

made software development productive and enjoyable. It allows developers to focus on the verification task itself, and stop fighting with language limitations.

Works with what you have

cocotb works with all commonly used RTL
simulators: VCS, ModelSim and Questa,
Xcelium, Riviera-PRO and Active-HDL GHDL,
CVC, Verilator and Icarus Verilog on Windows,
Linux, and macOS. If your simulator of choice
can simulate your RTL design, cocoth can verify
it! cocotb is just a library, integrate it with your
existing project automation.

E4

Benefit from the ecosystem

Verification is all about productivity. With
cocotb, your testbench can make use of the
whole Python ecosystem: over 400,000

packages, answers to over two

million questions on StackOverflow , and a
huge pool of books (including Python for RTL
Verification, a beok on cocotb itselfl), blog
posts, tutorials, and much more.

cocotb is not an island

With cocotb, interfacing with existing
infrastructure is easy. Do you want to talk to a
golden model in your testbench? Or to real
hardware, e.g. an FPGA or a logic analyzer? In
most cases, that's just a matter of looking for
existing Python bindings—like in this example,
where a handful lines of code are sufficient to
talk to Matlabl

Cl-capable test runner included

Are you tired of writing custom test runner tooling? With cocotb, tests are
automatically discovered and run. No more need for custom runners. The
cocoth test runner by default produces regression results in the industry-
standard Junit XML format, which is understood by most Cl solutions, such
as Jenkins, or Azure Pipelines.

Python is easy to learn (chances are you know it
already)

Python is the most popular programming language on the planet, giving
e

you a massive head start. It is used by more than 8 million
around the world. With cocotb, you can grow as you go. You only need to
learn a handful of conventions and you are ready to go. There is no
mandatory methodology or class structure to get started! cocotb's extensive
documentation and friendly user community are ready to help.

For more details, you may refer to our previou
talk "Cocotb: a Swiss Army Knife for hardware
verification" at PyCon China 2022 and the
upcoming follow-ups.

Workflow:

/ Python

outine
outine

outine

2
AEEEEER
| (51051181 B1181 8

-

Simulator

DUT
(Verilog / VHDL)

~

test_my design.py (simple)

import cocotb
from cocotb.triggers import Timer

@cocothb. test()
async def my_first test{dut):
"""Try accessing the design."""

for cycle in range(1@):
dut.clk.value = @
await Timer(1, units="ns"}
dut.clk.value = 1
await Timer(1l, units="ns")

dut. log.info("my_signal_1 is %s", dut.my_signal 1.value)

assert dut.my_sipnal_2.value[e] -- @,

Cocotb contains a library called cp1 (in directory cocotb/share/1ib/gpi/) written in C++ that is an

abstraction layer for the VPI, VHPI, and FLI simulator interfaces.

The interaction between Python and GPI is via a Python extension module called simulator (in
directory cocotb/share/1ib/simulator/) Which provides routines for traversing the hierarchy,

getting/setting an object’s value, registering callbacks etc.

Source: https://docs.cocotb.org/en/stable/

“my _signal 2[@] is not @|"

Extension:

https://docs.cocotb.org/en/stable/extensions.html
Cocotb gives its users a framework to build Python testbenches for hardware designs. But
sometimes the functionality provided by cocotb is too low-level. One common example are bus
drivers and monitors: instead of creating a bus adapter from scratch for each new project, wouldn't
it be nice to share this component, and build on top it? In the verification world, such extensions
are often called “verification IP” (VIP).

In cocotb, such functionality can be packaged and distributed as extensions. Technically, cocotb
extensions are normal Python packages, and all standard Python packaging and distribution
techniques can be used. Additionally, the cocotb community has agreed on a set of conventions to
make extensions easier to use and to discover.

https://github.com/cocotb/cocotb/wiki/Further-Resources

e cocotbext-eth: Ethernet (GMII, RGMII, XGMII, PTP clock)

cocotbext-pcie: PCl Express (PCle), and hard IP core models for UltraScale and UltraScale+

cocotbext-axi: AXI, AXI lite, and AXI stream

cocotbext-i2c: 12C interface modules

cocotbext-uart: UART interface modules

cocotbext-wishbone: Drive and monitor Wishbone bus

cocotbext-uart: UART testing

cocotbext-spi: Drive SPI bus

cocomod-fifointerface: FIFO testing

cocotbext-interfaces: "generalization of digital interfaces and their associated behavioral models”; Avalon ST

cocotbext-ral: A port of the uvm-python RAL to use BusDrivers
cocotbext-apb: AMPBA APB (Transaction, Master, Slave, Monitor)
cocotb-ahb AHB bus functional model

cocotb-tilelink TileLink UL bus functional model

1.10 PyH2

. https://github.com/pymtl/pymti3/
PyH2 creatively Adopts PBT(Property-based Testing) for software to test hardware. It combines PyMTL
(a unified Python framework for open-source hardware modeling, generation, simulation and verification)
with Hypothesis(a PBT framework for Python software and creates a property-based testing framework
for hardware, https://github.com/HypothesisWorks/hypothesis).

Python SystemVerilog
: Complete lterative
@ LFunctional-Level
A i—-C cle-l evel generate | | RTL Random Deepened
& - _‘_{] Testing Testing PyH2
RTL
// | Small number of test cases to find bug v X v
\f\ — | co-simulate lsynthesize Small number transactions in bug trace X v v
ulti-Level «——— ; . ;
i o pEOOE, Simple transactions in bug trace X v v
OFPGA O Simple design instance for bug trace X v v

prototype [ASIC O
— Test Bench bring_up q:":“:":":l:l

Source: “A New Era of Open-Source Hardware”, Christopher Batten, Cornell University.

1.11 Chisel

. https://www.chisel-lang.org/
* https://github.com/chipsalliance/chisel3 S -
peille g Digital Design
FIRRTL with Chisel
. https://github.com/chipsalliance/firrtl-spec
Flexible Internal Representation for RTL.
* https://github.com/chipsalliance/firrtl

This project is in maintenance mode

Pull Requests should only be made for bug fixes against versions 1.6 and below (Chisel 3.6 and below).

Please see CIRCT for the next generation FIRRTL compiler. Also see Chisel.

Treadle

* https://github.com/chipsalliance/treadle
Chisel/Firrtl Execution Engine.

Martin Schoeberl

Rocket Chip Generator Source: http://www.imm.dtu.dk/~mascal/chisel-book.html
* https://github.com/chipsalliance/rocket-chip

Tool flow of the Chisel ecosystem:

chisel3.lip

R
Hello.scala

scalac

Hello_class

Chisel
JVM
FIRRTL
Hello fir JVM
Chisel
Tester
JVM
\ Verilog
Tfﬁ?ﬂe Emitter
JVM

, v

good/bad Hello.ved :m%_‘
GTKWave Circuit
Synthesis

Hello_bit
i o eem

Source: http://www.imm.dtu.dk/~mascal/chisel-book.pdf

1.12 SpinalHDL

* https://github.com/SpinalHDL/SpinalHDL
* A language to describe digital hardware

Compatible with EDA tools, as it generates VHDL/Verilog files

Much more powerful than VHDL, Verilog, and SystemVerilog in its syntax and features

Much less verbose than VHDL, Verilog, and SystemVerilog

Not an HLS, nor based on the event-driven paradigm

Only generates what you asked it in a one-to-one way (no black-magic, no black box)

Not introducing area/performance overheads in your design (versus a hand-written VHDL/Verilog design)

Based on the RTL description paradigm, but can go much further

e Allowing you to use Object-Oriented Programming and Functional Programming to elaborate your hardware
and verify it

e Free and can be used in the industry without any license

. https://spinalhdl.github.io/SpinalDoc-RTD/
* https://github.com/SpinalHDL/VexRiscv

Cocotb in SpinalHDL

'3 1 [submodule "tester/src/test/python/cocotblib"]
2 path = tester/src/test/python/cocotblib
3 url = https://github.com/SpinalHDL/Cocotblib.git

[mydev@fedora SpinalHDL-dev]$ tree tester/src/test/python/cocotblib

AhbL1ite3.py
Apb3. py
Ax14.py
ClockDomain.py
Flow. py
init .py

LICENSE
misc.py
Phase.py
Scorboard. py
Sptl.py
Stream.py
TriState.py

1.13 Corundum

* https://github.com/corundum/corundum/
Open source FPGA-based NIC and platform for in-network compute.
* Block Diagram
FPGA N
piaids Interface
o I o LPHC)
T ~ ort
o [5{DMA 18
& el Ax] M) U: 2 MAC [SFP
" o
Con | el o=
(DRAM)e—bl & [f H : :
*I‘S\/Iemory ﬁ._}r MA | G:] MAC i SFP
- Stream ol —
SDMA |2 i
-+ PTP o <

Block diagram of the Corundum NIC. PCle HIP: PCle hard IP core; AXIL M: AXI lite master; DMA IF: DMA interface; AXI
M: AXI master; PHC: PTP hardware clock; TXQ: transmit queue manager; TXCQ: transmit completion queue manager;
RXQ: receive queue manager; RXCQ: receive completion queue manager; EQ: event queue manager; MAC + PHY:
Ethernet media access controller (MAC) and physical interface layer (PHY).

Source: https://github.com/corundum/corundum/

Testing
.

Running the included testbenches requires cocotb, cocotbext-axi, cocotbext-eth, cocotbext-pcie, scapy, and Icarus
Verilog. The testbenches can be run with pytest directly (requires cocotb-test), pytest via tox, or via cocotb makefiles.

1.14 ESSENT/RepCut

* https://github.com/ucsc-vama/essent/
Essential Signal Simulation Enabled by Netlist Transformations
A high-performance RTL simulator generator which operates on hardware designs in the form of FIRRTL.
The secret of ESSENT is to represent hardware designs as directed graphs so that the classic simulation
approaches could be simplified. Even compared with Verilator, ESSENT can still have performance

advantages at various optimization levels.

A I Verilator [|
Dynamic Event 8l - ESSENT 'D[}
Schedul Dri
chedule riven B ESSENT -O1
o 6 [ESSENT -02
S = [ESSENT -03
= ©
m G.l
] ESSENT 2 4
(this work) L
Static Full
Schedule Cycle 2t 1
-
Active Portion Entire Design
0
Portion of Design Simulated (per cycle) rocketle rocketls rocket20

Design
Source: “ESSENT: A High-Performance RTL Simulator”, Scott Beamer et al, WOSET 2021.

Repcut:

https://github.com/ucsc-vama/essent/tree/repcut
A parallel version of ESSENT that enabled by replication-aided partitioning approach (cuts the circuit into

balanced partitions with small overlaps).

8 _—\ /‘@
=
E= ®
(b) Verilator Schedule
af C 1 D)
8
= .
[: 2) ' Hyper;;raph
> Partition
(c) RepCut Partitioning (d) RepCut Schedule

(c) Build & Partition Hypergraph (d) Acquire Partitions

“RepCut: Superlinear Parallel RTL Simulation with Replication-Aided Partitioning”,

Source:
Haoyuan Wang and Scott Beamer, ASPLOS 2023.

2) Testbeds

* HW/SW
Testbed1: Intel NUC X15 LAPAC71H(32GB DDR5) with Fedora 38(Linux Kernel 6.3.11/6.4.15)
Testbed2: Raspberry Pi4 (8GB LPDDR4) with Fedora 37(Linux Kernel 6.3.8/6.4.12);
Testbed3: VisionFive 2(8GB LPDDR4) with Debian 12(Linux Kernel 5.15).

Choice of RAM

8
ssssss

1) Comparison

From official guide:
All verification is done using Python which has various advantages over using SystemVerilog or
VHDL for verification:

» Writing Python is fast - it's a very productive language.

* It's easy to interface to other languages from Python.

¢ Python has a huge library of existing code to re-use.

e Python is interpreted - tests can be edited and re-run without having to recompile the design.
e Python is popular - far more engineers know Python than SystemVerilog or VHDL.

From the theses and papers:

Testbench Lmes of code Comment lnes Blank Imes | Total file size
(kB)
Python 1634 237 223 82
SystemVerilog 2325 134 428 103
100 - e R R R
ol P B
Pythan
B0 - Systemierdog
Systemierlog
M- Pythoan
£ s0- f‘::
5 #
= S0- @
o)
é - #{-9’
30 - J;"
o
0 4
10 L4
?- L. - ! ! Il | ! I i
0 200 400 B 1000 1200 1400 1600 1300 2000

Source: "UVM TESTBENCH IN PYTHON: FEATURE AND PERFORMANCE COMPARISON WITH SYSTEMVERILOG IMPLEMENTATION”,

Write operations

Miikka Sinerva, master’s thesis 2023.

Simulation phase Peak Virtual Memory Size - Write test

M Python B SystemVerilog
Questa Sim - cov. collector disabled N 237 1450
VS - cov. collector disabled | INEG_—_—_— 174
Questa Sim | — 1450
VCs [—— 474
Questa Sim - high verbosity yETS 1450
VCS - high verbosity | EEG—S—. 174
0 200 400 600 800 1000 1200 1400 1600

Virtual memory size (Megabytes)

Simulation phase Peak Virtual Memory Size - Constrained

Questa Sim - PyVSC - Python
VCS - PyVSC - Python

Questa Sim - SVConduit - Python
Questa Sim - SystemVerilog

VCS - SystemVerilog

random stimulus test

I 344
. 174
I 346
iyl

I 366

0 100 200 300 400 500 600 700 800 900

Virtual memory size (Megabytes)

Simulation phase CPU time - Idle test

Questa Sim - 150ms simulation

VCS - 150ms simulation

H Python SystemVerilog

T3 177,32

2,00 240,60

0 50 100 150 200 250 300

CPU time (seconds)

Simulation phase CPU time - Write test

| Python SystemVerilog
Questa Sim - cov. collector disabled 3 835
VCS - cov. collector disabled [E—— 900
Questa Sim 13 923
ves - 1015
Questa Sim - high verbosity 856
WS - high verbosity 110 939
o 200 400 600 800 1000 1200

CPU time (seconds)

Simulation phase CPU time - Constrained random stimulus test

Questa Sim - PyVSC - Python
VCS - PWSC - Python

. 529
- __NEVF]
Questa Sim - SVConduit - Python 353

Questa Sim - SystemVerilog

V(S - SystemVerilog

m 40
N 61

0 100 200 300 400 500 600 700 800 900
CPU time (seconds)

1000

Simulation phase Peak Virtual Memory Size - | dle test

W Python & SystemVerilog

Questa Sim - 1 dock cycle simulation EGEGG————— | 555

VES - 1 clock cycle simulation IS 472

Questa Sim - 150ms simulation [1320
Vs - 150ms simulation EG—_—_—_—_—_—_—__ 172
0 200 400 600 800 1000 1200 1400

Virtual memory size (Megabytes)

Source: "UVM TESTBENCH IN PYTHON: FEATURE AND PERFORMANCE COMPARISON WITH SYSTEMVERILOG IMPLEMENTATION”, Miikka Sinervd, master’s thesis 2023.

From

Al’s perspective:

Paper Aims Main Advantages Drawbacks Algorithm Used
Functional coverage
fulfillment;
near-miss tracking; 4 ;
[12] discavaite Gy Focusing on several Few details on RL-based et
S b aspects of FV algorithms’ configuration &
focusing to reach :
certain functional states
of the DUT
Only a type of coverage in
= T IUse of ML algorithms to focus (state transition K-NN, Bayesian
[17] > increase the performance coverage) and only one R
coverage fulfillment S optimization
of an RL approach type of device in focus
(memories)
The library created allows R i it
the use of many RL AT
[18] Functional coverage algorithms without the e e e Soft actor critic
= widely used ones (e.g.,
need to know many of their :
< 2 : RTL-based testbenches)
implementation details
The degree of automation
Reaching a target state is increased by -nmlyzmg The pmp?sed approach)
[21] ofa DUT the results provided by RL Tequires many Q-learning
algorithms using deep computational resources
neural networks
The algorithms used are
; Using recurrent neural
[22] Functional coverage

very complex, and the time
fulfillment

networks far learning DUT required for verification

Rainbow agent, based
2 engineers to be on Q-learning
behaviot comfortable with them
could be significantly large
Detailed presentation of Not using ML algorithms;
: configuration possibilities not working with Semigradient
Current work Reachmfg aéﬁet - for RL-based systems; (Q-learning, which is the
e development of efficient

temporal-difference

widely used option due to (SGTDY)

inference mechanisms its proven performance

Source: “Reinforcement Learning Made Affordable for Hardware Verification Engineers”,

Alexandru Dinu and Petre Lucian Ogrutan, Micromachines 2012.

From the trend:

ASIC verification language adoption (testbench) ASIC verification methodologies

Design Projects

Design Prajects
= & B 8 &
F F F 2 27

cocaln

VHOL Venlog SystemVeriog Specmane GG+ Accellera PSS Python OTHER
Testenth ASIC verification methadologies
ASIC; Veriicaticn Lanauage Adositon w2014 w2018 m2022
a1y w202
Soiren o4 Sawy

SIEMENS . SIEMENS

Source: https://blogs.sw.siemens.com/verificationhorizons/2022/12/26/strongpart-10-the-2022-wilson-research-group-functional-verification-study-strong/

FPGA verification language adoption (testbench) FPGA methodologies and testbench base-class libraries

70%

LIVM users are doing

corstraimad.randem
OSVVM and UVVM user are doing
I constrainad-randem l d l

dologies end Testbench Base-Class Libranes

esign P

w2014 w28 W,
FPG

sounce . » : .
o 20227 > L3401 SHmans 20221 FUNCons! RECon Sy SIEMENS

SIEMENS
Source: https: //blogs sw.siemens.com/verificationhorizons/2022/11/21/part-6-the-2022-wilson-research-group-functional-verification-study/

2) Potential Enhancements

2.1 New Python Runtimes
2.1.1 SpinalHDL

Testbed1
* Comparison

CPython 3.11.4 + OpenJDK 17.0.7 (s) GraalPy 3.10.8 + GraalVM CE(v23.1.0 dev release

Time-consumin
B 20230609 for Java 20) (s)

Compile 45 49

Test 325 407
With Linux Kernel 6.3.11: time-consuming for Compile and Test of SpinalHDL (on dev branch with last
commit ¢5553fcd7cdf05edd6d35fb2424115c3654528b7) with CPython+Open)JDK and GraalPy+GraalVM.

GraalPy 3.10.8 + GraalVM CE(v23.1.0 dev release

Time-consuming | CPython 3.11.5 + Open]DK 17.0.8 (s)
20230817 for Java 21) (s)

Compile 2(?) 48

Test 227 . 383

LGN

With Linux Kernel 6.4.15: time-consuming for Compile and Test of' $pinaIHDL (on dev branch with last
commit 2fdc3aadfc859bbfcf0fb559658606f3dbedf705) with prti|1¢)n+0penJDK and GraalPy+GraalVM.

copying runtime jar...

[info] welcome to sbt 1.6.0 (GraalVM Community Java 21) FaiIEd tO run due tO an issue Of
" bad constant pool index: @ at pos: 48445 SBT’ a Workaround as bEIOW:

e (;Dmpl'[.l?\g: <no file> . [mydevii@koonuc15x-1 SpinalHDL-dev]$ git diff
during phase: globalPhase=<no phase>, enteringPhase=<some phase> diff --git a/project/build.properties b/project/build.properties

library version: version 2.12.15 index 1e7@bOclc..304098715 100644
compiler version: version 2.12.15 == el Er sl
reconstructed args: -classpath /home/mydev11/.sbt/boot/scala-2.12.15/11b/scala-1library.jar -Yrangepos

++ b/project/build.properties
@@ -1 +1 @@

last tree to typer: EmptyTree
tree position: <unknown>
tree tpe: <notype>

symbol: nul Gradually move to Mill or Bloop.

call site: e> in <none>

== Source file context for tree position ==

Testbed2
* Comparison

GraalPy 3.10.8 + GraalVM CE(v23.1.0 dev release
Time-consuming | CPython 3.11.5 + Open]DK 17.0.8 (s) 20230817 for Java 21) (s)
Compile 649 Similar issues as Testbed1 and CPython+Open]DK
Test 14517 Similar issues as Testbedl and CPython+Open]DK

With Linux Kernel 6.4.12: time-consur}p‘ing tfor Compile and Test of SpinalHDL (on dev branch with last
commit 2fdc3aadfc859bbfchfb5596$$606f3dbe4f705) with CPython+OpenJDK and GraalPy+GraalVM.

|
[mydev@fedora SpinalHDL]$ cd SpinalHDL-dev/
[mydev@fedora SpinalHDL-dev]$ du -sh
2.66
[mydev@fedora SpinalHDL-dev]$ git diff
diff —-git a/build.sbt b/build.sbt
index c56d64953 .. 06aaadb64 100644
-- a/build.sbt

++ b/build.sbt
co redump @@ -16,13 +16,13 @@ val defaultSettings = Defaults.coreDefaultSettings + xerial.sbt.Sonatype.sonaty
scalafmtPrintDiff = true,

//Enable parallel tests

A workaround:

disable parallel testing _ (
for(i < 0 until 4) yield {
Group("g" + 1, group.tests.zipWithIndex.filter(_._2 % 4 = 1).map(_._1), SubProcess(ForkOptions()))
}

// concurrentRestrictions := Seq(Tags.limit(Tags.ForkedTestGroup, 4)),

libraryDependencies += "org.scala-lang" % "scala-library" % scalaVersion.value,
[mydev@fedora SpinalHDL-dev]$ I

2.1.2 Corundum

* Comparison

)) GraalPy 3.10.8 + GraalVM CE(v23.1.0 dev release
Time-consuming | CPython 3.11.4 + Open]DK 17.0.7 (s) 20230609 for Java 20) (s)
Test 4012.37 3916.22
(run with tox, venv) | (setup[33.03]+cmd[3979.34] seconds) (setup[15.08]+cmd[3901.11] seconds)

On Testbed1 with Linux Kernel 6.3.11: time-consuming of testing Corundum (on master branch with last
commit 56c89640e0deb8083a4b899b2e7c344c52f89053) with CPython+OpenJDK and GraalPy+GraalVM.

Time-consuming | CPython 3.11.5 + OpenJDK 17.0.8 (s) | GraalPy 3.10.8 + GraalVM CE(v23.1.0 dev release
20230817 for Java 21) (s)

Test 3914.69

(run with tox, venv) (setup[15.03]+cmd[3899.66] seconds) Infeasible
Test 4125.86 N/A
(run without tox) 4170.97(enable verbose)

On TestbedI with Linux Kernel 6.4.157 time-consuming of testing Corundum (on master branch with fast
commit ed4a26e2cbc0a429c45d5cd5ddf1177f86838914) with CPython+Open)JDK and GraalPy+GraalVM.

* run without tox
pytest -n auto [--verbose]

o]V{ 4l [mydev1i@koonuc15x-1 /]$ cat ~/.local/bin/pytest
#!/usr/bin/python3
-*- coding: utf-8 -*-
import re
import sys
from pytest import console_main

f _name__ == '_main__':
sys.argv = re.sub(r'(-script\.pyvw|\.exe)?$', , Sys.argv)
sys.exit(console_matin())

[mydevii@koonuc15x-1 /1%

hack the shebang of pytest script with that of GraalPy and RustPython:
Various issues will occur to block the test, especially for RustPython, we are still trying to resolve

them...

2.2 Alternatives to GHDL
2.2.1 Try to replace GHDL with NVC in the future

1)

[mydevii@koonuc15x-1 nvc-master]$ tree -L 2 -d 1ib l[mydevil@koonucl15x-1 nvc-master]$ tree -L 3 -d src

2) NVC is still not as mature as GHDL...

3) Options for GHDL and NVC:
https://gritbub-ghdl.readthedocs.io/en/latest/using/InvokingGHDL.html#options

https://www.nl.me.uk/nvc/manual.html

2.2.2 Re-implement GHDL by SPARK
What is SPARK:

SPARK is a high-level computer programming language consisting of a well-defined subset of Ada. Like
Ada before it, SPARK was designed for the development of high-integrity software used in systems where
predictable and highly reliable operation is essential. SPARK uses a language feature known as “contracts”
to specify components in a form that is suitable for static verification using formal methods.

“From the perspective of programming language capabilities, the paradigms are very similar to C and C++,
said Dhawal Kumar, a principal software engineer at NVIDIA and one of their first SPARK users. “SPARK is
an imperative programming language. You can write procedure-oriented or object-oriented code, and
there are other facilities for programming in the large.”

)/

Source: https://www.adacore.com/uploads/techPapers/222559-adacore-nvidia-case-study-v5.pdf

https://github.com/AdaCore/spark2014

Languages

.|l
® Ada983% ® Python 1.0%

» Coq 0.3% ® C03% ® Makefile 0.1%

® Assembly 0.0%

Reduces development costs:
The demand for cost-effective tools and methodologies has greatly increased in the automotive and industrial domains

over the past few years. Using Ada and SPARK reduces the cost of developing safety and security-critical software by
automating many verifications that would otherwise need to be done through manual code reviews or testing. It also
allows the detection of potential issues early in the development process, reducing the amount of errors needing to be
fixed in later stages. For industries that have strong safety, reliability, and security standards, like aerospace and
automotive, these benefits can translate to nearly 40 percent cost and time savings from enhanced software
verification, according to a study by VDC Research.

0% If Ada used If Java used If C++ used If C# used

0 T T

-5%
-10% -
-15%
-20% -

-25%

-27.0%

-30% -
Source: https://www.adacore.com/nvidia

2.3 Evaluate the support of RepCut

1) ESSENT/RepCut are written in Scala and using SBT for build. So it can also run on GraalVM like Chisel
and SpinalHDL. A typical flow using the tool will: use ESSENT to generate head file from the Firrtl input,
then write a C++ harness for the emitted code, compile everything, and finally run the simulation;

2) ESSENT/RepCut still need developer to manually write C++ harness to generate the simulator, so the
developers need to know both Scala and C++. Shall we use Python-based DSL to re-implement it for
better developer experience and more easily integrated with Cocotb? Let’s further discuss them in
another paper “Python-based emerging DSLs for FOSS EDA” of mine @ DVCon China 2023;

3) During practicing ESSENT/RepCut on Testbeds, we found that it lacks of detailed user guide and there
are some mistakes in old tests that need to be updated.

2.4 Al-assisted Cocotb
2.4.1 VeRLPy

* https://github.com/aebeljs/VeRLPy

VeRLPy is an open-source python library developed to improve the digital hardware verification process by using

Reinforcement Learning (RL). It provides a generic Clym environment implementation for building cocotb-based
testbenches for verifying any hardware design. ,’ A

VeRLPy is currently dependent on OpenAl Gyny gécctb cocotb-bus, and Stable Baselines3. These packages should

get installed alongside VeRLPy when |nsta|||r)g us:ng pip . For running the verification, a simulator compatible with
/

cocotb is additionally required. Please refer t;é the official cocotb documentation to set this up.
/
/
1//’/

https://github. com/openallgym — https://github.com/Farama-Foundation/Gymnasium

Inheriting CocotbEnv

L 2 # test_my_example design.py @cocotb.coroutine
def setup_rl_episode(self):

add here the logic to be
executed on each call to reset() by the RL agent

import cocotb

from verlpy import CocotbEnwv

@cocotb. coroutine
def rl _step(self):

add here the verification logic to be

class MyExampleDesignCocotbEnv(CocotbEnv):
def _ init (self, dut, observation_space):
super()._ init_ ()
self.dut = dut # DUT object used for cocotb-based verification # executed on each call to step() by the RL agent
self.observation_space = observation_space # state space of the RL agent
add here any "self." wvariables that need to be accessed in @cocotb. coroutine
def terminate_rl_episode(self):
add here the logic to be executed at the end
of each RL episode when done == 1 for the Gym env

other functions below

@cocotb. coroutine
def setup_rl episode(self):
add here the logic to be

executed on each call to reset() by the RL agent def finish_experiment(self):

add here the logic to be executed after all

the episodes are completed

Source: https://github.com/aebeljs/VeRLPy

Architecture & Design

L 2 R R R e e RN AR

Track events

occurring in DUT in
this S:V
1 ofCompare against
expected Wﬂ output
output signals

Reference
model

- o o

'———-------—-———--—--J

Compute next state
and reward

parameters for the
input sequence
generator

1
1
1
1
1 e ’
1 input signal 1] 1 1
.—————-—-—-—‘ Isequenoe i I 1 »
I c;)co#b I Next | inputsignal I observed i
i ayer 1 : it s + sequence > DUT joutput signals f
) [= === --- i enerator 1] : 1
1 ! - |_ . U | 1 ! 1 .
' 1 I : B 1 I 1
[P »1 Hardware 1 T 1 . Ry e e = 1
I layer p I - | -
. 1 ¢ | I 7T T eeaeeaseessamsme--- J
1 1 S _' " 1 Observation/
~ ! : Action
i
1

(a) A top level view of the framework (b) Block diagram of the complete framework with the component layers demarcated using

magenta (cocotb layer), blue (Hardware layer) and orange (RL layer)

Source: “VeRLPy: Python Library for Verification of Digital Designs with Reinforcement Learning”, Aebel Joe Shibu et al, 2021.

Histogram of individual event coverage

Histogram of discrete action param 2

= fandom || 350 EEE Random = fandom
50600 - - 700 g AL
300000 o0 600
250000 230 s00
200000 200 400
150000 0 300
100000 100 200
so00m s0 100
o o a
o z H 1 2 H I 5 5 7 5 100 200 300 400 500 600 700 800 900 1000
Events 22 counter width Number of elements in Feature Map
(a) (b) (©
Histogram of individual event coverage
Histogram of Discrete action param 1 Histogram of Discrete action param 2
B fandom B Random . Random
Ba0e0: - - 200 [~
200
0000
150
25000 50
20000
3 100
15000 e
10000
so s0
so00
o o
o 1 2 3 4 5 & 71 & & 409 8192 12268 16384 20480 24576 28672 32768 36664 40960 8191 12267 16383 20479 24575 28671 32767 36863 40959 45055

(d)

Address Limit 1

(e)

Address Limit 2

©

Fig. 3. Comparison of coverage and actions chosen during the 1000 iterations. RLE Compressor - Figure 3(a) shows the event coverage
that is tracked when event e3 is rewarded. Figure 3(b) shows the histogram of count_width values suggested by the RL agent. Figure
3(c) shows the histogram of sequence length suggested by the RL agent. AXI Crossbar - Figure 3(d) shows the event coverage that is
tracked when event ey is rewarded. Figure 3(e) and Figure 3(f) shows the histograms of the choices for the lower and upper limit of

the address ranges

Source:

“VeRLPy: Python Library for Verification of Digital Designs with Reinforcement Learning”, Aebel Joe Shibu et al, 2021.

What is it

* Under development (to be open-sourced in 2024)
Next generation Cocotb from us by re-design and re-implement it in various ways,
and come with the enhancements that mentioned in section II.

1) Cocotb with emerging Python-based DSLs

* The key ideas are in another paper “Python-based emerging DSLs for FOSS EDA” of mine @
DVCon China 2023.

2) Cocotb with Dlanc

* Rewrite the native code in Cocotb(mainly C++) with |Bdl, and more...

2.1 RISCV-DV

* https://github.com/chipsalliance/riscv-dv Languages

RISCV-DV is a SV/UVM based open-source instruction generator for RISC-V processor verification. It currently - ———————

supports the following features: ® Ppython 47.2% @ D 26.4%
SystemVerilog 25.9% ® Makefile 0.3%
= Supported instruction set: RV32IMAFDC, RV64IMAFDC Shell 0.19% @ Forth 0.1%

= Supported privileged mode: machine mode, supervisor mode, user mode
= Page table randomization and exception

¢ Privileged CSR setup randomization

e Privileged CSR test suite

¢ Trap/interrupt handling

¢ Test suite to stress test MMU

o Sub-program generation and random program calls

e lllegal instruction and HINT instruction generation

» Random forward/backward branch instructions

 Supports mixing directed instructions with random instruction stream
= Debug mode support, with fully randomized debug ROM

= Instruction generation coverage model

= Handshake communication with testbench

¢ Support handcoded assembly test

¢ Co-simulation with multiple ISS : spike, riscv-ovpsim, whisper, sail-riscv

eUVM

* https://github.com/chipsalliance/riscv-dv/blob/master/euvm/README.md
About the RISCV-DV eUVM port

The RISCV-DV eUVM port is a line-by-line translation of the RISCV-DV SystemVerilog implementation. Except for functional coverage (a work in
progress), all other RISCV-DV features have been implemented in eUVM port.

* https://github.com/coverify/euvm/releases For more details of ESDL
el EUVM v1.0-beta27 Release () and eUVM, you may refer
fyiiea to our report
© v1.0-beta2? e &

o fo3300 New in this Release: “D-based Next Generation
Compare - L Verification Language” and
« Support for Concurrency in Fork itS update-
Installation:
tar xf euvm-1.8-beta27.tar.xz r_[;

cd euvm-1.8-beta2?
.futils/setup.sh

v Assets 4

@euvm—‘!.O—bE‘taE?—(enms?‘tar.xz 117 MB Jun 12
@euvm-to-betaﬂ‘tar‘xz 117 MB Jun 12
E]Source code (zip) Nov 30, 2022

mSource code (tar.gz) Nov 30, 2022

3) Cocotb with Al

* Extend Cocotb to support extensions for Al and Distributed Computing, and a customized
project Ray (you may find it in another paper “Python-based emerging DSLs for FOSS EDA”
of mine @ DVCon China 2023.

4) Chisel Verification with Cocotbh?
* A long-term goal...

More software development methods together with Al are being introduced into
hardware design verification and deeply integrated.

Our effort to try to enhance Python-based verification framework such like
Cocotb in various ways shows that it still has great potential for further
improvement and may be brought to more FOSS EDA projects in the near future.

It is not surprisingly that Python-centric one-stop toolchain will gradually

becoming mainstream in FOSS EDA.

11163
[LIBRARIES]

Is it time to thank UVM and say goodbye?

Source: https://olofkindgren.blogspot.com/2022/10/its-time-to-to-thank-uvm-and-say-goodbye.html

