ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

DV decenéla

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Exploring Formal Verification: A Journey Through Maturity Levels
and Case Studies, with a Glimpse into the Future of Assertion
Creation with the Power of GPT

Shawn Zhang /\

N
e

5

| el =

)

WHTRT

Agenda

Introduction

= History of formal

= Algorithm of formal

= Classification of formal
= Future of formal

Case Study

= Functional Safety(Level 1)
= Connectivity(Level 2)

= MHDMA (Level 3)

= Pyro-Fuse(Level 4)

Autogeneration

= QOpen Verification Library
= ezAssert

= ChatGPT

Conclusion
= Summary
= Future work
= Reference

25 October 2023

Agenda

Introduction

= History of formal

= Algorithm of formal
Classification of formal
Future of formal

25 October 2023

History of formal

Raiad & 2 Model Checkers
Historical Origins : ; _ _
= Bug hunting machines that build proofs through exhaustive state-space search
Edsger W Dijkstra $ Powerful tools, easy to learn and great for debugging but suffer capacity limits!
Abstraction BDD, AlG, SAT, Induction

“Program testing can be used to show the presence of bugs, but never to show their absence!”

1980-1990 1999-2005

Some interesting quotes from him [Source EWDR203 | 1970s
] P Symbolic MC Bounded MC
. Model Checking
| shall argue that our programs should be correct Temporal 10°™ states Probabilistic
Specification 10% states SMV TLA+ Event Based

| shall argue that debugging is an inadequate means for achieving that goal and that we Languages LTL, SPIN MURPHI

EBMC PRISM RODIN
must prove the correctness of programs CTL

1995

I shall argue that we must tailor our programs to the proof requirements

Intel FDIV
Symbolic Trajectory Evaluation
FORTE

+ Dozens of model checkers, including four EDA players

, z oy . + Nearly a $100 million+ industry
I shall argue that programming will become more and more an activity of mathematical nature

Applications to all kinds of designs, cache-coherency,

I

= |n April 1970, Edsger Wybe Dijkstra pointed out “Testing shows the presence, not the absence, of bugs”.
= |n 1981, Emerson and Clarke provided the first automated model-checking algorithm.

= After several decades, Model-checking applications for hardware verification have come a long way.

= The ratio of the first silicon success has declined to its lowest point in 20 years!!.

= The biggest challenge is insufficient tests to close the coverage.

25 October 2023

Formal vs Simulation

F

Formal Analysis vs. Simulation

< Initial state
@ Bug state
o Good state

Exhaustive States Exhaustive Stimuli
Model Checking Constrained Randomization
A Simple Wrapper is enough A Complex Testbench is necessary
Suitable for control-oriented design Suitable for long data path design
Property-driven. One loop at one clock cycle Event-driven. One step at one timeslot

25 October 2023 4

BDD (Binary Decision Diagram)

— Simulation — Formal — Simulation — Formal
| Stimulus | Resuit | | Stimuus | Result_

s l, 1, Out Q I; I ’ Out Q
0 0 0 0 0 0 0 0 G
0 0 1 1 Q a 0 0 1 1
S | ORI VR Y, o1 oo |1 () () (U
e e 0)[1] [0][7][0]la] [O) e ol[1] [0 [0
1 0 0 0 1 0 0 0
1 0 1 0 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

0

— oo

out 0 1 Ir,;er* out 0 1
I

2

Spec DUT
Out ==(I, && I)) I ("1, &&I,) Out ==(l, && 1)l (!,&&,)

v
;

|;{;

2

25 October 2023 5

Model Checking

O o

]
0]01]Ol1_jlz 0 a T

AND OR NOT 2

Primitive BDDs Circuit Computing 0 1

Formally, the Model Checking problem can be stated as follows: given a desired property, expressed as a
temporal logic formula p, and a structure M with initial state s, decide if M,s |=p. If Mis finite, as it isin

hardware, model checking reduces to a graph search.--—--- Wikipedia

BDD models can grow exponentially with each additional input or state element.

Time and memory are the bottleneck.

25 October 2023 6

Application of formal

e
i

JasperGold Use Models >LEPV) | core Formal

F-nm:al Pm;mrty
Verification App

L i :
g FV wherever we can, Simulate >{[Superlint @{
© where we must’ s CSR SuperLint App
% Control/Status) _
2 RTL Design Analysis e _lcoc|®@
T >[[CONN]{&E) Gock pomain
= Fantastic for Formal amnachey
o erification App o x
s : : > XPROP || A «<—
o Formal to Complement >[sEc| & i
— i i . CcOov Saq;:emial Eqn]ivalnnr:n
= Simulation — cm::;:N iy
g Verification App - JES EFC 6
N Formal Sign-off i P -
[> JasperC and CZRTL
E ‘_ o — = . Coverage - pr—- Jasper Visualize and
. Unreachability App debugging tools
= .
O - >
S -] L
24 Formal to “Shift Left” and catch Deep Bug Hunting VEGAT . e
'-E bugs sooner
(13 a
o Security a_ng ng-Power SPV o@ @ |: E (¥
L Verlfl cation Security-Path Functional Safety Low Power
Verification App Verification App Verification App

JUG2021, Introduction to formal and jasper gold(3!

25 October 2023

Classification of formal

25 October 2023

Shift Left; Formal Bug Hunting Exhaustive: Formal Sign-Off
RTL Assertions Level 5
Arbiter
Hers : @Systf—;m Arch|
Handshake -
Connectivity Bus Protocol Level 4 ngﬂ Oﬁ
Register checks o S
: T ystem Deadlock
Clock gating {}4 .BIOCk Cache Coherence
Sequential LEC Laals o SIgﬂ-Off Sys-Level Security
Auto Checks Load/Store Unit
X-propagation Warp Sequencer

Unreachability Cache Controller

Multi-Lane Aligner
MAC Rx Block

Formal Apps

Auto Formal

Level 1

L1: Automatic formal such as auto-checking, formal linting, and dead-code identification
L2: Formal applications such as connectivity checking, register checking, and X checking
L3: Assertion-based VIP formal verification such as interface and bus assertions

L4: Block-level signoff that thoroughly verifies all block-level design behaviors

L5: System architectural-level verification focusing on specific high-level design

Future of formal

Identification
/ S-Evaluate)
Model
|)
Identify
Real
Level b
— Rand
Level 4
Level 3
—_— F-Evaluate
Level 2
- Model
Level 1 6)
_ ") Interface
\ Constraint)

\C /

— Implementation

Accumulation
f S-Metrics \
Test
\ Closure
Checker
100%
Coverage —
80%
//, ‘\\ 60%
F-Metrics —_—
‘) 40%
\ Stimuli —
() 20%
Property o/
Reachability

N2

25 October 2023

Case Study

= Functional Safety (Level 1)
Connectivity (Level 2)
MHDMA (Level 3)

= Pyro-Fuse (Level 4)

25 October 2023

10

Functional Safety(Level 1)

TB %A_O DIG-TOP SUT Logic Fault Collapsing
) %A_O = Equivalence
= Domi
T ;ﬂ oomienc |
’ esign-Based Fault Pruning
N I DL Functional | | * Activation
g |4;DFD®© * Propagation
e Test-Based Fault Pruning
* Fault Collapsing with constants
. - Chfc_lfer = Activatability analysis with constants
4@ 0 * Propagability analysis with constants

25 October 2023 n

25 October 2023

Results

N NN N

16094 15305 99.74% 0.12% 99%
FST+FSV_TC 16094 3860 752 2 11480 99.73% 23.98% 100%
T e LT

23568 22629 81.69% 0.92% 86%

FST+FSV_TC 23568 5399 790 0 17379 100% 22.91% 100%

I I A N A O N

65.02% 0% b5%

FST+FSV_TC 618 418 64 93 43 40.76% 67.64% 84 %

12

PinMux(Level 2)

(- ——\ " 2
Functional [Pad Config Register J __[/OPADO |
BlocklO
g | /0 PAD1
Functional
Blockl [Peripheral 0 Pin | X [joPAD2 |
ripher in | «—| T
> _ . = >
[Peripheral 1Pin] — g
%_*.
' D
{ Functional } [Peripheral 7 Pin] — | B [|/0 PADn]
Block n /
_ \ J

= PinMux is a type of multiplexer for connecting multiple peripheral functions to one |10 pad controlled
by a set of registers as shown in the Figure.

= The verification of PinMux is to exhaustively verify the consistency between the DUT and the
connectivity definition in the specification.

= |tistedious, error-prone, and time-consuming.

25 October 2023

13

Con

N

Simple connection Name Source instance Source signal Destination instance Destination signal
CONNECTION axi_csr_addr axi_brdg int_addr csr_blk int_addr

axi csr addr: assert (axi brdg.int addr == slv3.bus_if.regfile.int addr);

Connection with condition expression

CONNECTION laxi_csr_req axi_brdg int _req csr_blk int_req[3]

axi_csr_req: assert (axi_brdg.b_addr »>= 16 &8 axi_brdg.b_addr < 32 |-»> axi_brdg.int_reg

Connection with individual conditions

| (axi_brdg.b_addr >= 16 && axi_brdg.b_addr < 32)

slv3.bus_if.regfile.int req[3]);

CONNECTION

axi intr overflow: assert (axi_brdg.int_req ==

Connections tied to a constant: All bits of bus tied to constant

axi brdg fifo full intr ctl overtlow
|axi_brdg int_req 1
|axi_brdg int_write 1

1 && axi_brdg.int_write == 1 |-»> axi brdg.fifo full == int ctrl.overflow);

CONNECTION

intr tied low

JDA:LOW

intr ctl

irq[3:8]

CONNECTION

intr_tied_high

JDA:HIGH

intr ctl

irg[7:4]

intr_tied low: assert (4°boe8@ == intr ctrl.ir
intr tied high: assert (4'bl111 == intr ctrl.i

25 October 2023

q(3:@]);
rq[7:4]);

Picture from Cadence

14

MHDMA (Level 3)

mhdma_top

—p AHBSlave < AHB Interface >

< AHB Interface 0 > AHB master 0 |«
-

-+

AHB Interface 1 AHB master 1 |-

-+

AHB Interface 2 AHB master 2 |-

CTRL

= This DMA block isan AMBA3 compliant IP. It is used to transfer data among mem and peripherals
without CPU intervention.

= There are 3 AHB masters used for general data transfer. 1 AHB slave is used for mmr programming.

= The control signals are used to control the arbitration and main FSM.

25 October 2023 15

Current Flow

Testbench

= -

H "
\ Garden ;|
., P 4

.......

mhdma_top

B2, T e
< AHB Interface 0 AHB master 0 & [\ [Tva
Sat %, dishes Ssa ' - ¢
< i Meal ”~-~‘-"' Relaxing ; —» AHBSlave AHB Interface
% o ; | \ — = o
“l)npnrl on / s - T
S
-+
AHB Interface 1 AHB master 1 |- 7 V.
R &
V4
7
vl
7 4
Z L
< R 7
AHB Interface 2 AHB master 2 |-

Checker

©) (@) @) @

= A UVM-based testbench contains all required components and UVCs. (3~5 days)

= Design a suite of testcases or sequences according to Spec. (1~2weeks)

= Designrelated checkers. (1~2weeks)

= Debugand pass the first testcase. (1~2days)

25 October 2023

New Flow

abvip
monitor0

N\

€0,

abvip
monitor1

' /
\, preparation //
.

~

abvip §0 <
AHB Interface 1 AHB master 1 |-
slave1 Rat

abvip
monitor2

~ N\

abvip X il
AHB Interface 2 AHB master 2 |-

slave2

abV|p AHB Interface 0 AHB master 0 |- ,-""-Q.‘ {
slave0 < foss Ny

PoMeal P ey

WAE:
Leaving >
\
~
R2 .

mhdma_top

AHB Slave <

abvip
monitor3

2

03

AHB Interface >

\

CTRL

- Ramp up the usage of Assertion-based VIP such as master mode and monitor mode. (1 day)

= Design asimple wrapper to include DUT and ABVIP. Do the configuration such as type/width. (1 day)

- Designthe tcl file for Jasper with proper filelists, assumptions and options. (1 day)

- Debugand pass the first assertion. (1 day)

25 October 2023

Timeline

sim
vplan
review

@

@

formal
setup

«

first
formal
bug

@

designer
last
commit

s

"Gy

hand
over
formal

A©1

sim bug

formal
coverage
collection

e o

sim

EEESTTTTN <1 clean

&

coverage

25 October 2023 18

Convergency

600

500

400
61

300 n “

489
572

200
100
0
AUG 12 AUG 16 AUG 18 AUG 23 AUG 24 AUG 25
H Proven/Covered Undetermined ® CEX/Unreachable

25 October 2023 19

Coverage

12000
m Covered Uncovered ®mUnreachable mDeadcode
10000
o
932
1526
8000

6000
4000
6591 6811
5423
2000
0

AUG 12 AUG 16 AUG 18 AUG 23 AUG 24 AUG 25

25 October 2023

Pyro-Fuse (Level 4)

Cax
| A e s T e S SO VIS X [e e R e e (R e T T R L |
I I
| |
[Suppl Ener 5
ot &lr— VDTtnaF;:s 2 reseelrii — Ensbia —> —; |
uC supply | — HS1.4 HS1..4 B« |
|
L S |
| |
l Voltage > Heating
I Watchdog element Pyro fuse
| monitoring — 1 for battery
I | disconnect
Disable HS ,
Disable LS l,
|
| b K
| > Enable — L51.4 —
B¢

SPI control —|9' SPI interface Control unit [e— P LS1..4

r———

e e O e el P B AP N L R e |

Official Account: New Energy BMS

= Pyro-Fuseis adevice that can disconnect a battery from an electrical system.
= |tisastate machine that contains a huge state space and many unexpected corner cases.

= No available Assertion-based VIP can be leveraged.

25 October 2023

Timeline

simulation simulation
first
assertion coding coding
SuperLint pass start finish stable
F 4 8 2 Mar09 0 April19 26 0
& @ @ @: ran @0 win @B G
RTL deploy deploy Diag
0.8 assertions | debug
finish finish

)

30 Days

25 October 2023

Convergency

120

100

B0

G0

40

20

MAR 2

MAR 7

MAR 10
B Proven/Coverad

MAR 21

Undetermined

MAR 25 APR 11
B CEX/Unreachable

AFR 2B

MAY 30

25 October 2023

23

Autogeneration
= Open Verification Library

ezAssert
ChatGPT

25 October 2023

24

Open Verification Library

clock

—=test_expr nvf_always

fire [OVL_FIRE WIDTH-1 :E:]L-

reset enable

)

T 7

ovl_always #(

*OVL_ERROR, I
*OVL_ASSERT, i/
“Error: reg_a < reg_b 1s not TRUE”, i’/
*OVL_COVER_NONE, .
YOVL_POSEDGE, 7/
*OVL_ACTIVE_LOW,

'OVL_GATE_CLOCK) 4

reg a_lt reg b |

clock, Y&

reset, 'y

enable,

reg_a < reg_b, /!

fire); £
£l

severity level
property_ tvpe
msq
coverage_level
clock_edge
reset_polarity

gating_type

clock
reset
enable
test_expr
fire

Checks that (reg_a < reg_b) is TRUE at each rising edge of clock.

clock [[[[[[[

reset]

reg a<reg b

ALWAYS Error: reg_a < reg_b is not TRUE

= The OVL is composed of a set of assertion checkers that verify specific properties of a design.

= The ovl_always assertion checks the single-bit expression test_expr at each active edge of the clock.

= Although the OVL can save some time, the limited templates still can't fulfill all the scenarios, especially
those highly customized blocks.

25 October 2023

25

ezAssert

Project Name: EName Design Top Name: |Name

Aliases | Sequences & Properties |

Sequence [Name

disable iff (Disable Conditien)
(Antecedent) |-> (Consequent)
endproperty
Name_assert: assert property (Name) else $warning(“"Fail Message");

_ Add Sequence
Frcwal fgs | [Exprorseq [No Repetition 3 |After T Cycle 3
4 [Em :
O e g |Expror Seq |No Repetition —J_d
Depth |2 ﬂ
SystemVerilog Code
List of Sequences sequence Name;
(Expr or Seqg) ##1 (Expr or Seq)
endsequence
Move Seq Down
Order Seqs |
Pi N
| Name [Antecedent |Sa.me Cycle g [Sansequent Add Property |
Formal Ar: -
= l..ﬂ.ssert ﬂ |Disable Candition Update Property |
A |Glo
I |Warn1ng ﬂ [Fail Message Delete Property
Edgel Boge ﬂ
SystemVerilog Code
List of Properties property Name;

25 October 2023

ezAssert is one of our in-house GUI-
based assertion development tools

By using ezAssert, we can
implement specification-oriented
programming instead of facing the
syntax of SVA.

However, you still need to describe
the assertion by using the
primitives of ezAssert instead of
using SVA directly. And thisis the
most difficult step.

ezAssert is not easy and intelligent
enough to help you finish the
translation from human language to
computer language SVA directly.

26

Formal Added-on MDV Hybrid Strategy

= Sh: Assertion comiletion from iieces to intei riti bi usini GPT
25 October 2023

—ldentification — Implementation Accumulation

S-Evaluate @ 4 S-Metrics)
- VIP Test " Clasure
(ldentify)) . S) ’ Closure
Real Checker
Level 5) g :) ’ 100%

Lovel | Rand) - Coverage J) 507,
Level 3 /ﬁ / \ 0%
[J
[)
—

o D
I o 15

Stimuli

F-Evaluate F-Metrics
Level 2 () 0
. LOC g @ F @
Level1 () 4
| Interface |
| Parameter | @

S1: Assertion translation from human language to computer language by using GPT

DBgRE

Property

Reachability

S2: Assertion documentation from incomprehensible to understandable by using GPT
S3: Assertion validation from syntax-wrong to syntax-correct by using GPT

S4: Assertion optimization from low quality to high quality by using GPT

27

Translation of assertions

Create an assertion to make sure all the signals are stable
during the wait state according to the protocol of AHB3 lite

// Assertion to check signal stability during the wait state
assert property (
@(posedge clk)
disable iff (!hsel || !hready)
##1 $stable(hready) && $stable(hsel)
)

$error(”AHB3 Lite protocol violation: Signals not stable during wait state at time %t", $time);

ARMAMBA
> E:]j Interconnect Standards

afla Systém\%rﬂog

property ahb3 lite master output stable;
@(posedge hclk) disable iff (lhresetn || hready)
$stable(htrans) && $stable(hsel) && $stable(hwrite) && $stable(hsize) &&

$stable(hburst) && $stable(hprot) && $stable(haddr) &8 $stable(hwrite _data);
endproperty

assert property (ahb3 lite master output stable)
else

$error("Master output signal changed during wait state");

25 October 2023

Documentation of assertions

Can you explain the meaning of this assertion?

property HS2;
@(posedge clk) (Req ##1 GntB) |=> (Busy[*1:$] ##1 Done);
endproperty

The provided assertion defines a SystemVerilog property named “HS2™.
Let's break down its meaning step by step:

1. “property HS2; : This line starts the definition of a new property named “HS2".

2. “@(posedge clk) : This is an implication operator (" |=>") that specifies the timing of the property.
It means that the property is evaluated at the positive edge of the “clk™ signal.

3. “(Req ##1 GntB) : This is the antecedent (left-hand side) of the implication.
It is a concatenation of two sequences:

- "Req”: This represents a signal/event named “Req”.
- "GntB™: This represents a signal/event named “GntB™.

The “##1" between them means that “Req” and “GntB™ must occur back-to-back, i.e.,
“Req” must occur one clock cycle before “GntB~.

4. ~|=>": This is the implication operator, which means "implies" or "leads to."
It indicates that if the antecedent is true, the consequent must also be true.

5. “(Busy[*1:$] ##1 Done)”: This is the consequent (right-hand side) of the implication.
It is a concatenation of two sequences:

- “Busy[*1:$]°: This is a non-empty sequence of events represented by the signal/event “Busy .

The “[*1:$]" means that “Busy ™ must occur one or more times continuously.

- "##17: This means that there is a gap of exactly one clock cycle between the end of the “Busy ™ sequence
and the start of the "Done” sequence.

- "Done™: This represents a signal/event named ~Done”.

25 October 2023

Putting it all
together, the meaning
of the "HS2 property
is:

"When at a positive
edge of the "clk , if
there is a sequence of
events where "Req and
"GntB~ occur back-to-
back, it implies that
there must be a non-
empty sequence of
"Busy events followed
by a "Done sequence.”

In simpler terms, this
property specifies a
protocol where when a
request (Req) 1s
followed immediately by
a grant (" GntB), with
a one-clock cycle gap
between the last "Busy
and the "Done events.

29

» Conclusion
= Summary
= Future work
= Reference

25 October 2023

30

Summary

Author’s Viewpoints

= Useful for block-level verification such as DMA, Bus Matrix, Arbiter, Buffer control logic, Cache, MMU,

protocol checking etc. A good criterion is ~3000 lines valid RTL code. (Confirmed by Cadence AE)

= Designer friendly. More than the structural errors found by Lint, functional errors can also be
detected by Formal. Fill the gap before simulation testbench is ready and implement the shift-left
verification.

= Supplyment of simulation for corner cases, unreachable coverage, xprop, connectivity checking etc.

= Replacement of simulation? Not now, due to both human resource and computing power to design
maitain and execute the assertions.

Pros

= Easyto set up and start the verification. No testbench is needed.

= Be able to discover errors you never anticipate.

= AIGC improves the performance of the autogeneration and assertions can be re-used.
= Many scenarios can be applied with all these Jasper Apps.

Cons

= Proving time can't be accepted with along data path or a huge number of states.
= RAM-hungry especially enables the coverage collection.

= FPV convergence issues.

25 October 2023

31

Future work

= Optimize the convergency issue by using helper assertion, abstraction, etc.
= Develop more reusable assertion suites.

= |Implement the automation flow.

= Explore the APl of ChatGPT.

25 October 2023

32

Reference
[1]Harry Foster, 2022 Wilson Research Group Functional Verification Study”, Verification Horizons,
18 December 2022

[2]Erik Seligman, Tom Schubert, MV Achutha Kiran Kumar. (2015). “Formal Verification. An Essential
Toolkit for Modern VLSI Design”. Elsevier Inc.

[3] Luiza Pena.(2021). “Introduction to formal and jasper gold”. Jasper User Group Webinar.
[4]Ping Yeung, Arun Khurana, Dhruv Gupta, Ashutosh Prasad, Achin Mittal.(2022). DV CON US.

Helpful Links:

https://support.cadence.com

https://www.eeweb.com/a-brief-history-of-formal-verification/

25 October 2023

33

https://support.cadence.com/

Thank You!

