

 Python-based emerging DSLs
for
 FOSS EDA

Feng Li (李枫)
hkli2012@126.com
Sep 20, 2023

An indie developer from China
u The main translator of the book «Gray Hat
 Hacking The Ethical Hacker's Handbook,
 Fourth Edition» (ISBN：9787302428671)
 & «Linux Hardening in Hostile Networks,
 First Edition» (ISBN: 9787115544384)

u Pure software developmement for ~15
 years(~11 years on Mobile dev)

u Actively participating Open Source
 Communities:
 https://github.com/XianBeiTuoBaFeng2015/MySlides

u Recently, focus on infrastructure of
 Cloud/Edge Computing, AI, IoT,
 Programming Languages & Runtimes,
 Network, Virtualization, RISC-V, EDA,
 5G/6G…

Who Am I

 Agenda
I. Background
 Technology Stack
 Testbeds
II. Practice & Exploration
 Exo
 Mojo/xDSL
 Acton
 Ray
III. Future Work
 Next generation system language
 New VMs for emerging workloads
IV. Wrap-up

1) Technology Stack
1.1 Exo

I. Background

u https://exo-lang.dev/

 https://github.com/exo-lang/exo

u For more details, you may refer to our previous talk "Exo--A new programming language for hardware
accelerators" at OSDT 2022 and the upcoming follow-ups.

…

 A low-level language (and Exocompiler) designed to help performance engineers write,
 optimize, and target high-performance computing kernels onto new hardware accelerators.

HelloWorld
u .

I. Background

 Source: https://exo-lang.dev/

How it works
u .

I. Background

Source: “Exocompilation for Productive Programming of Hardware Accelerators”, Yuka Ikarashi et al, PLDI 2022.

 1) Pioneers
 Halide(https://halide-lang.org/), TVM(https://tvm.apache.org/) etc.
 2) Main external dependencies
 ASDL(https://github.com/ChezJrk/asdl)
 a modern Python (3.8+) library for generating helpful algebraic data types out of ASDL(Abstract Syntax
 Definition Language) definitions.
 PySMT(https://github.com/pysmt/pysmt)
 a Python library for SMT(Satisfiability Modulo Theory) formulae manipulation and solving)/Z3(a famous
 theorem prover from Microsoft Research).

I. Background

…

1.2 Mojo
u https://www.modular.com/mojo

u https://github.com/modularml/
u https://mojolang.org/

I. Background

…

A new Python eDSL (also designed as a superset
of Python) from Modular AI (building a platform
with the intent to unify the world’s ML/AI
infrastructure) that founded by "The farther of
LLVM" (Chris Lattner).
It means a programming language with powerful
compile-time metaprogramming, integration of
adaptive compilation techniques, caching
throughout the compilation flow, and other
things that are not supported by existing
languages.
From the perspective of implementation, Mojo
is not only built on top of MLIR but also provides
a way to access it.

Our predictions: Mojo will become one of the key technologies to AGI.

I. Background

 Source: https://zhuanlan.zhihu.com/p/367035973

 Source: https://docs.modular.com/mojo/programming-manual.html

HelloWorld
u .

I. Background

 Source: https://www.modular.com/mojo

Getting Started
u https://docs.modular.com/mojo/manual/get-started/index.html

SDK:

I. Background

Source: https://www.modular.com/blog/mojo-its-finally-here
…

Workflow of Mojo and Modular Engine
u .

I. Background

Source: https://www.modular.com/hardware

I. Background

Source: https://www.modular.com/engine

1.3 Acton
u https://www.acton-lang.org/
 A general purpose programming language, designed to be useful for a wide range of
 applications, from desktop applications to embedded and distributed systems by adding
 Actors(https://en.wikipedia.org/wiki/Actor_model) to Python, it is also a compiled
 language that offering the speed of C but with a considerably simpler programming model.
 There is no explicit memory management, instead relying on Garbage Collection. Acton is
 statically typed with an expressive type language and type inference.
 The Acton Run Time System (RTS) offers a distributed mode of operation allowing multiple
 computers to participate in running one logical Acton system. Actors can migrate between
 compute nodes for load sharing purposes and similar. The RTS offers exactly once delivery
 guarantees.
u https://github.com/actonlang/acton

I. Background

…

HelloWorld
u .

I. Background

 Source: https://github.com/actonlang/acton

How it works
u .

I. Background

 Source: https://github.com/actonlang/acton

1.4 xDSL
u https://xdsl.dev/
 A reimplementation of MLIR core features in pure Python which aims at bridging the Python
 DSL community with the MLIR one, by being fully compatible with MLIR through the textual
 format. Dialects can as well be translated from one framework to the other through IRDL.

 https://github.com/xdslproject/xdsl

I. Background

…

Source: “xDSL: Prototyping MLIR in Python”, Sasha Lopoukhine et al,
 European LLVM Developers' Meeting 2023.

Source: “xDSL: A common compiler ecosystem for domain specific languages”,
 Nick Brown et al, Supercomputing Conference 2022.

IRDL (IR Definition Language)
u https://doi.org/10.3929/ethz-b-000557152
 An IR definition language for SSA compilers.

u $SRC_XDSL/src/xdsl/irdl

I. Background

IRDL enables the concise
specification of compiler IRs
for the use within a multi-IR
compilation flow.
It is expected to serve as a
foundation for a future
ecosystem of productivity
increasing tooling around IR
design.

Source: “IRDL: An IR Definition Language for SSA Compilers”, Mathieu Fehr et al, PLDI 2022.

1.5 Ray
u https://www.ray.io/
 A unified framework for scaling AI and Python applications. Ray consists of a core
 distributed runtime and a set of AI libraries for simplifying ML compute.
u https://github.com/ray-project/ray
u https://www.anyscale.com/

History:

I. Background

… Source: Ray AIR Technical Whitepaper

u .

u For more details, you may refer to our previous talk "Ray--A Swiss Army Knife for Distributed Computing
& AI" at COSCon 2022 and the upcoming follow-ups.

I. Background

 Source: https://www.anyscale.com/platform

Ecosystem
u .

I. Background

 Source: https://docs.ray.io/en/master/_images/air-ecosystem.svg

Code demo
u .

I. Background

 Source: https://www.databricks.com/notebooks/raydemo.html

Overall design
u .

I. Background

 Source: https://www.anyscale.com/blog/modern-distributed-c-with-ray

 Source: https://www.anyscale.com/blog/announcing-ray-2-0

1.6 OpenXLA
u https://github.com/openxla
 An open-source ML compiler ecosystem co-developed by Alibaba, AWS, AMD, Apple, ARM,
 Google, Intel, Meta, NVIDIA, and more, which using the best of XLA
 (https://www.tensorflow.org/xla) & MLIR.
 It aims at accelerate and simplify ML development by defragmenting the ML stack across
 frontend frameworks and hardware backends.

I. Background

Source: https://pytorch.s3.amazonaws.com/posters/ptc2022/H01.pdf

IREE (Intermediate Representation Execution Environment)
u https://openxla.github.io/iree/

I. Background

 Source: https://openxla.github.io/iree/#project-architecture

An MLIR-based end-to-end compiler and runtime
that lowers ML models to a unified IR that scales
up to meet the needs of the datacenter and
down to satisfy the constraints and special
considerations of mobile and edge deployments.
It adopts a holistic approach towards ML model
compilation: the IR produced contains both the
scheduling logic, required to communicate data
dependencies to low-level parallel pipelined
hardware/API like Vulkan, and the execution
logic, encoding dense computation on the
hardware in the form of hardware/API-specific
binaries like SPIR-V(the industry open standard
intermediate language for parallel compute and
graphics).

u For more details, you may refer to our previous talk "IREE--
MLIR-based end-to-end compiler and runtime for Machine
Learning" at OSDT 2022 and the upcoming follow-ups.

1.7 The others
u For the rest of technology stack that needed by this topic, please refer to

corresponding part of the topic "Beyond UVM" of mine @DVCon China 2023.

I. Background

2) Testbeds
u HW/SW
 Testbed1: Intel NUC X15 LAPAC71H(32GB DDR5) with Fedora 38(Linux Kernel 6.3.11/6.4.15);
 Testbed2: Raspberry Pi 4 (8GB LPDDR4) with Fedora 37(Linux Kernel 6.3.8/6.4.12);
 Testbed3: VisionFive 2(8GB LPDDR4) with Debian 12(Linux Kernel 5.15).

I. Background

1) Exo
 Install and test from the source directly:
 pip install -e . --verbose --user

 For Install and Test Exo on master branch with last commit 700fe3bb00ab9564eadf35787cba60edd02e92c0) on Testbed2

II. Practice & Exploration

2) Mojo/xDSL
2.1 Mojo
2.1.1 llama2.mojo
u https://github.com/tairov/llama2.mojo
 Inference Llama 2 in one file of pure

II. Practice & Exploration

Performance
u .

II. Practice & Exploration

2.2 xDSL
 Install and test from the source directly:
 pip install -e . --verbose --user

 For Install and Test xDSL on master branch with last commit 700fe3bb00ab9564eadf35787cba60edd02e92c0) on Testbed2

II. Practice & Exploration

3) Acton
 Install and test from the source directly:
 make -j$(nproc) & make test

 For Install and Test Acton on main branch with last commit 991188fb72fd441028ebd44d5980b77f94361d2f) on Testbed2.

II. Practice & Exploration

Patching for AArch64 as Acton officially only
support X64:

 For Install and Test Acton on main branch with last commit 144a3820ec0c028a74e25b645f30edca2904ebcd) on Testbed1.

II. Practice & Exploration
…

…

…

…

4) Ray
4.1 Distributed simulation and verification

II. Practice & Exploration

u .

u Trying to use Acton to reconstruct Cocotb for parallelly running the Python testbenches across in a
distributed cluster system with various RTL simulators, or even make an attempt to re-implement a
distributed RTL simulator by Acton. By the way, distributed simulation and verification are the future
trends in HW verification as we can observe:

Source: “Using On-Premise FPGAs and Distributed Metasimulation”,

 Abraham Gonzalez, ISCA 2022. Source: https://github.com/chipsalliance/UHDM/blob/master/images/UHDM_future.png

Clustering at Edge
 Method 1: Method 2:

II. Practice & Exploration

Source: https://turingpi.com/product/turing-pi-2/

4.2 Beyond Kubernetes

 You may refer to our upcoming follow-ups like "First exploration of beyonding Kubernetes" etc.

II. Practice & Exploration

Source: “Ray - A Swiss Army Knife for Distributed Computing & AI”, Feng Li, COSCon 2022.

4.3 Re-design and re-implementation of Ray

 Ray as a universal infrastructure for distributed computing, especially in HCI
 (Hyper-Converged Infrastructure)…

II. Practice & Exploration

Source: “Ray - A Swiss Army Knife for Distributed Computing & AI”, Feng Li, COSCon 2022.

Our RayII Series
RayII.Rust (has some work done)
RayII.Java (upcoming)
RayII.Acton (focus on replace Haskell with Zig in the compiler of Acton firstly)
RayII.Net (has some preliminary work done)
RayII.Graal (long-term)
RayII.Zig (long-term)
RayII4HCI (in the design and early experimental stage)
…

II. Practice & Exploration

1) Next generation system language
 Ideas:

III. Future Work

Source: “First exploration of D for HW-SW co-designed system”, Feng Li, 1st OSEDA Workshop China 2022.

 Our technology roadmap:

 Method1: Mojo (if it will be open source in the future)

 Method2: xDSL (as an open source alternative to Mojo in some extent, and more)

 Method3: D Zig

 For more materials, you may refer to our previous talks "Will D be a
 better system programming language" at OpenInfra Days China 2022
 and "First exploration of D for HW-SW co-designed system" at 1st
 OSEDA Workshop China 2022 and the upcoming follow-ups.
 …

 And how about a lightweight re-implementation of LLVM?

III. Future Work

2) New VMs for emerging workloads
 IREE Runtime:

 Rethinking the architecture & design of new virtual machines for emerging workloads…

III. Future Work

Source: “IREE: standard-/compilation-based ML stack via Vulkan/SPIR-V”, Lei Zhang, Khronos ML Webinar 2022.

IV. Wrap-up
u Mojo is a great innovation which indicates AI-driven programming language in
 the future and how they will interact with modern toolchains such as LLVM.
together with AI are being introduced into hardware design verification and deeply integrated;

u The deep superposition of the ecosystem of Python and LLVM will far beyond
 our imagination, especially for the field of AI-assisted hardware design and
 verification.

u There will be a golden age for Python-based DSLs in FOSS EDA. together with AI are
being introduced into hardware design verification and deeply integrated;

u Python & its DSLs are changing the way we think about hardware development!

