2023
sveer (accellera
H1NA SYéTEM-S INIfIATIVE

DESIGN AND VERIFICATION ™
CONFERENCE AND EXHIBITION

Shanghai | September 20, 2023

........

Python-based emerging DSLs
for

FOSS EDA

Feng Li (Z=1X)
hkli2012@126.com
Sep 20, 2023

%
o ke
8 IRIEEEe.,
= __ EXREmamen.
% BEMK. WHHERRAR FRA
%

El

rravey NETOMEERAGE K
W SRS

HACKING

ynical Hackers
The €

£nwEn B R

¥

wEmETETe

Linux B5fil 28

Linwe Hardening in Hostile Networks

»

»

An indie developer from China

¢ The main translator of the book «Gray Hat

Hacking The Ethical Hacker's Handbook,
Fourth Edition» (ISBN: 9787302428671)
& «Linux Hardening in Hostile Networks,
First Edition» (ISBN: 9787115544384)

Pure software developmement for ~15
years(~11 years on Mobile dev)

Actively participating Open Source
Communities:
https://github.com/XianBeiTuoBaFeng2015/MySlides

Recently, focus on infrastructure of
Cloud/Edge Computing, Al, loT,
Programming Languages & Runtimes,
Network, Virtualization, RISC-V, EDA,
5G/6G...

Agenda

. Background
n Technology Stack
m Testbeds
Il. Practice & Exploration
Exo
m Mojo/xDSL
| Acton
| Ray
lll. Future Work
m Next generation system language
u New VMs for emerging workloads

IV. Wrap-up

1) Technology Stack
1.1 Exo

. https://exo-lang.dev/
A low-level language (and Exocompiler) designed to help performance engineers write,

optimize, and target high-performance computing kernels onto new hardware accelerators.

What does Exo do?

Exo is a domain-specific programming language that helps low-level performance engineers transform

very simple programs that specify what they want to compute into very complex programs that do the

same thing as the specification, only much, much faster.
https://github.com/exo-lang/exo

Languages

® Python 92.0% ® C++37% ® C27%
® CMake 1.3% QOther 0.3%

For more details, you may refer to our previous talk "Exo--A new programming language for hardware
accelerators" at OSDT 2022 and the upcoming follow-ups.

HelloWorld

* Hello Exo!

Let’s write a naive matrix multiply function in Exo. Put the following code in a file called example. py:

example.py ()
from __future__ import annotations
from exo import *

@proc
def example_sgemm(
M: size,
N: size,
K: size,
c: f32[M, N] @ DRAM,
A: f32[M, K] @ DRAM,
B: f32[K, N] @ DRAM,
)

for i in seq(0, M):
for j in seq(0, N):
for k in seq(0, K):
cli, 31 += A[i, kI = B[k, i1 v

And now we can run the exo compiler:

$ exocc -o out --stem example example.py A
$ 1s out
example.c example.h v
<

Source:

These can either be compiled into a library (static or shared) or compiled directly into your application.
You will need to write a short runner program yourself to test this code. For example:

// main.c ~
#include <stdio.h:=

#include <stdlib.h=

#include <time.h>

#include "example.h"

float* new_mat(int size, float wvalue) {
float* mat = malloc(size * sizeof(*mat));
for (int i = 0; i < size; i++) {
mat[i] = value;
H

return mat;

1

int main(int argec, char® argv[]) {
if (argc != 4) {
printf("Usage: %s M N K\n", argv[0]);
return EXIT_FAILURE; v
1

< >

Then this can be easily compiled and run:

% gcec -I out/ -o runner main.c out/example.c
$./runner 128 128 128
Each iteration ran in 11590 milliseconds

< >

https://exo-lang.dev/

How it works

* | User schedules via rewrites (§3.3)
Frontend .split()
.reorder() Backend
Type Check il
Memory/Precision Check =
Bounds Check * .unroll() * E‘
.inline() Codegen [User defined (§3.2):
Assert Check replace() (§3.4) * Memory
» Config
* Instructions

Source: “Exocompilation for Productive Programming of Hardware Accelerators”, Yuka lkarashi et al, PLDI 2022.

1) Pioneers
Halide(https://halide-lang.org/), TVM(https://tvm.apache.org/) etc.
2) Main external dependencies
ASDL(https://github.com/Chezlrk/asdl)

a modern Python (3.8+) library for generating helpful algebraic data types out of ASDL(Abstract Syntax
Definition Language) definitions.

PySMT(https://github.com/pysmt/pysmt)

a Python library for SMT(Satisfiability Modulo Theory) formulae manipulation and solving)/Z3(a famous
theorem prover from Microsoft Research).

pySMT makes working with Satisfiability Modulo Theory simple:

» Define formulae in a simple, intuitive, and solver independent way

» Solve your formulae using one of the native solvers, or by wrapping any SMT-Lib compliant solver,

* Dump your problems in the SMT-Lib format,

e and more...
i User application E
L o o e o e e e e e e e e = - I
4
PySMT: Formula API
£ Beatily Oracles Simplifier Substituter Serializer Type
= < Manager : : Checker
o
| PYSMT: Solver API |
\ | Converter | | Converter] | Converter | | Converter I | Converter | | Converter | | Converter | |S.\-‘I"l‘-];113 IO|
Python API Python API Python API Python API Python APL Python APL Python API POSIX Pipe
Z3 MATHSAT CVC4 YICES Cupp PicoSAT BooLECTOR St}l{-j\;ﬁm

Python

aATEN

. https://www.modular.com/mojo A new Python eDSL (also designed as a superset
. of Python) from Modular Al (building a platform
|\/| OJO 6 — the with the intent to unify the world’s ML/AI
infrastructure) that founded by "The farther of

prog ramming |ang Uage LLVM" (Chris Lattner).

It means a programming language with powerful
compile-time metaprogramming, integration of
for d | | A| de\/ek)pers : adaptive compilation techniques, caching
throughout the compilation flow, and other
Mojo combines the usability of Python with the things that are not supported by existing

performance of C, unlocking unparalleled

- - languages.
programmability of Al hardware and extensibility
of Al models. From the perspective of implementation, Mojo
4 https://github.com/modularmi/ is not only built on top of MLIR but also provides
. https://mojolang.org/ a way to access it.
Mojo may be the biggest programming AR A= HERGEESRANSY: FUERANREES
language advance in decades Mojo kit~

Moijo is a new programming language, based on Python, which fixes Python’s performance and
deployment problems.

Our predictions: Mojo will become one of the key technologies to AGI.

Mojo is a programming language that is as easy to use as Python but with the performance of C++ and Rust.
Furthermore, Mojo provides the ability to leverage the entire Python library ecosystem.

The Golden Age of Compilers

Inish eraEiior dviare/Softyarelct deign Mojo achieves this feat by utilizing next-generation compiler technologies with integrated caching, multithreading,

and cloud distribution technologies. Furthermore, Mojo’s autotuning and compile-time meta-programming features
allow you to write code that is portable to even the most exotic hardware.

More importantly, Mojo allows you to leverage the entire Python ecosystem so you can continue to use tools

Chris Lattner

SiF:"E' e you are familiar with. Mojo is designed to become a superset of Python over time by preserving Python’s dynamic
April 19, 2021

features while adding new primitives for systems programming. These new system programming primitives will
allow Mojo developers to build high-performance libraries that currently require C, C++, Rust, CUDA, and other

accelerator systems. By bringing together the best of dynamic languages and systems languages, we hope to

Co_d e S ig n Of H W a n d SW d eS ign provide a unified programming model that works across levels of abstraction, is friendly for novice programmers,

and scales across many use cases from accelerators through to application programming and scripting.
CPU, etc. GPGPU, etc. TPU,NPU,etc. ~ FPGA, GPLD, etc. ASIC Source: https://docs.modular.com/mojo/programming-manual.html

IR
-

IRISC- V-

ERL

Programmable xPUs Custom Hardware' — !
Source: https://zhuanlan.zhihu.com/p/367035973

HelloWorld

Notebooks

El Hello, Mojo &

g B JE

Hello Mojo 4

We're excited to introduce you to Mojo with this interactive notebook!

Mojo is designed as a superset of Python, so a lot of language features and functions are the same. For instance, a "hello world” program in Mojo looks
exactly like it does in Python:

Python doesn’t natively support systems programming, so here’s how we do it in Mojo.

et var

Mojo supports ‘let’ and ‘var' declarations, which introduce a new scoped runtime wvalue

: “let’ is immutable and ‘var® is mutable. These values use lexical
scoping and support name shadowing:

def

Source: https://www.modular.com/mojo

Getting Started

* https://docs.modular.com/mojo/manual/get-started/index.html
SDK:

P il X f"t_y_"t

m‘*&g [Moje J < >

MO:‘O
Mojo
Develeper Tools w w ;]
‘ comp-le_r !': runtime ; Formotter

Mg e o P R,

(B s J

Hardware/Systems

cPU GPU | - ¢

Source: https://www.modular.com/blog/mojo-its-finally-here

Workflow of Mojo and Modular Engine

» » »

FRAMEWORKS MODULAR ENGINE YOUR COMPILER + KERNELS YOUR HARDWARE

Modular handles integration & packaging M
end-user tools CO

hin tools

Source: https://www.modular.com/hardware

aWws

CLOUD & ON-PREM

FRAMEWORKS learn 1F

MODULAR ENGINE

SERVER & EDGE (intel AMDZV

Source: https://www.modular.com/engine

% O

arm </

RISCW

XGBoost

nviDia

https://www.acton-lang.org/

A general purpose programming language, designed to be useful for a wide range of
applications, from desktop applications to embedded and distributed systems by adding
Actors(https://en.wikipedia.org/wiki/Actor_model) to Python, it is also a compiled
language that offering the speed of C but with a considerably simpler programming model.
There is no explicit memory management, instead relying on Garbage Collection. Acton is
statically typed with an expressive type language and type inference.

The Acton Run Time System (RTS) offers a distributed mode of operation allowing multiple
computers to participate in running one logical Acton system. Actors can migrate between

compute nodes for load sharing purposes and similar. The RTS offers exactly once delivery
guarantees.

https://github.com/actonlang/acton

Languages

N
® Co64.8% ® Haskell 30.4%

@ Python 3.0% ® Makefile 0.8%

® Zig 0.8% Shell 0.2%

HelloWorld

’ Actors is a key concept in Acton. Each actor is a small sequential process with its own private state.
Actors communicate with each other through messages, in practice by calling methods on other
actors or reading their attributes.

Source:

An actor definition
actor Act(name):

Top level code in an actor runs when initializing an actor instance, like
__init__() 1in Python.

print("Starting up actor " + name)

def hello():
We can directly access actor arguments, like “name’
print("Hello world from " + name)
TODO: remove 'return True' as it should not be necessary, but with the
default (returning None), we get a segfault when we do await async on
this method.
return True

actor main(env):
Create an actor instance a of Act
a = Act("Foo")
Call the actor method hello
await async a.hello()

await async env.exit(0)
Compile and run:

actonc actors.act
./actors

Output:

Starting up actor FOO

Hello world from FOO

Source: https://github.com/actonlang/acton

L 2

How it works

Kinds

* Check annotations
for well-formedness

* Replace annotation
wildcards

f====—=-" I

| Types I
syntax I, Infer missing types 1 Syntax
tree 1. | tree

Y Check correctness
M« Infereffects

I+ Resolve overloading |

I - Computethe MRO |

I + Writeinterfacefiles I

-l

= =)
’ fSyntaxtree Constraints Substitutions

Parser

* Check grammar

* Identify recursive
definition groups

* Build syntax tree

Acton text

Solver

* Validate subtyping
* Identify overloading
witnesses

* Match function args
* Apply defaults

STZL/E SE/773/7L/CS

Source: https://github.com/actonlang/acton

Normalizer

Qualify global names

Move parameter
defaults
Simplify assignments

‘ ’ Syntax tree

Deactorizer

Replace actors with
classes and RTS calls
Wrap actor methods
into RTS calls

Syntax
tree

Turn free variables
into parameters or
self-attributes

Lift all functionsand |
classes to the top |

Syntax tree

CPS

Turn all (blocking)
functionsand calls
into continuations
Replace exception
handlers with RTS
calls

DHNRMIC SRS

Syntax
tree

CodeGen

* Print function defsin
C syntax

C text

Clang + RTS lib

¢ Scheduler

* Socket 10

¢ Built-in data structs
(list,dict,set,str)

r
I
1
1
|
1
1
1

| I

— o o el
l Executable

1.4 xDSL

* https://xdsl.dev/
A reimplementation of MLIR core features in pure Python which aims at bridging the Python

DSL community with the MLIR one, by being fully compatible with MLIR through the textual
format. Dialects can as well be translated from one framework to the other through IRDL.

I PEytlone | 2o m = mE T mmm [
Eortran Parser&AP|- :
@ | xost MLIR e L speciic xDsL Fortran
IA'_’. .)t - snu:.:a || transforms backend : dialect Fortran
code :
—@ | — @ _ _ ExistingPsyclonecompier _ bitoir EAmE
: | | Standard

Fortran

’ : | transfonmnations
’ Fortran Fortran
I'l B f]farg:;‘ +PGAS +MPI LLVM-IR
: . . diglects dialects
Analysis ‘

Results l l
Fortran

+FPGA LLVM-IR
E O ™
Hardware Tardets
Source: “xDSL: Prototyping MLIR in Python”, Sasha Lopoukhine et al, Source: “xDSL: A common compiler ecosystem for domain specific languages”,

European LLVM Developers' Meeting 2023. Nick Brown et al, Supercomputing Conference 2022.

https://github.com/xdslproject/xdsl

IRDL (IR Definition Language)

L 2

https://doi.org/10.3929/ethz-b-000557152
An IR definition language for SSA compilers.

(Domain-Specific) Compiler

— Vet Neoan —7— CPU
Source AST |
‘ ———— = ST GPU-A
— | Affine — SCF ~{
[S ENGREEs . — GPL-B
& L) Y [
IR Language Server IR Statistics IR Refactoring More IR Tools

IRDL enables the concise
specification of compiler IRs
for the use within a multi-IR
compilation flow.

It is expected to serve as a
foundation for a future
ecosystem of productivity
increasing tooling around IR
design.

Source: “IRDL: An IR Definition Language for SSA Compilers”, Mathieu Fehr et al, PLDI 2022.

SSRC_XDSL/src/xdsl/irdl

1.5 Ray

* https://www.ray.io/
A unified framework for scaling Al and Python applications. Ray consists of a core
distributed runtime and a set of Al libraries for simplifying ML compute.

* https://github.com/ray-project/ray

* https://www.anyscale.com/

Ray is the most popular open source framework for scaling and

productionizing Al workloads. From Generative Al and LLMs to computer
vision, Ray powers the world’s most ambitious Al workloads.

History:

+ ML scientists, 7 :
+ ML engineers Ray Al Runtime

System SWEs,

Resgarchors » ‘ RLIib || Tune H | » | Data || Train H RLIib H Tune H Serve ‘
I |

Ray Core Ray Core | Ray Core |
2016-2017 2018-2021 2022+

Evolution of the Ray stack and target users. AIR unifies the previously independent Ray libraries
into a toolkit that works seamlessly with the ML ecosystem, enabling organizations to leverage
Ray with less custom platform and integration work.

Source: Rav AIR Technical Whitepaper

Experiment Hyperparameter

QOrchestration)
management Tuning

Sh anyscale
Fully-Managed Scalable Compute Platform
Serving /
Traini
Al Applications
Workspaces Services
Data
Locding Training Tuning
Ray Al Runtime
Data 0% RAY Unified Framework for Scalable Computing Explui:ubilﬁy
feat
Salires Observability

Managed Service Observability Access Control

Any cloud

Source; https://www.anyscale.com/platform " . . L. .
* For more details, you may refer to our previous talk "Ray--A Swiss Army Knife for Distributed Computing

& Al" at COSCon 2022 and the upcoming follow-ups.

Ecosyste

’ e 4 STABLE

STABLE
J4l pandas @ Parguet R humpy BETA
Ermow JsoN [Bosv e S e
>>> o i | 1 ‘: ALPHA
STABLE] STABLE !
SEEHX TensorBoard !
J H COMMUNITY-MAINTAINED
o, F TensorFlow € PyTorch mifiow I WEB @orion @
drnic . s i
XGBoost " s LightGBM COMMUNITY-MAINTAINED H
COMMUNITY-MAINTAINED ¥ i i
COMMUNITY-MAINTAINED i HISIGOPT ¥ Nevergrad | il B |
spaik MARS f@dask ‘ HEBS #9 o |
=2 oo .@n ¥ B PyTorchlightaing | K Ay ‘e Dragenfiy
! | ' i
H i i
: ‘- :
| ' '
| '
: Train Tune —— Core
input for runs under runs under
t
Datasets S e
a
5 .
input for RLlib produces Predictor runs under Serve
) i i
___________________________ L. [e R
STABLE | STABLE o Tensorfiow O PyTorch | STABLE
| ; dmi - |
F TensorFlow O PyTarch (&) || miffow XGBoost T lightGem | © FastaPl
COMMUNITY-MAINTAINED .| COMMUNITY-MAINTAINED COMMUNITY-MAINTAINED

K Quiity © Wab ebw. ¥ Adrize “roradio

Source: https://docs.rav.io/en/master/ images/air-ecosystem.svg

Code demo

’ # First, decorate your function with @ray.remote to declare that you want to run this function remotely.
Lastly, call that function with .remote() instead of calling it normally.
This remote call yields a future, or ObjectRef that you can then fetch with ray.get.

@ray.remote
def fi(x):
return x * X

futures = [f.remote(i) for i in range(4)]
print(ray.get(futures)) # [0, 1, 4, 9]

[0, 1, 4, 9]

Ray provides actors to allow you to parallelize an instance of a class in Python.
When you instantiate a class that is a Ray actor, Ray will start a remote instance of that class in the cluster.
This actor can then execute remote method calls and maintain its own internal state.

@ray.remote
class Counter(object):
def __init__(self):
self.n = 0

def increment(self):
self.n += 1

def read(self):
return self.n

counters = [Counter.remote() for i 1in range(4)]
[c.increment.remote() for c 1in counters]
futures = [c.read.remote() for c in counters]

print(ray.get(futures)) # [1, 1, 1, 1]

[1, 1, 1, 1]
Source: https://www.databricks.com/notebooks/ravdemo.html

Overall design

Ray Al Runtime

Scoring Serving RL

Datasets Training H Tuning

Storage and Tracking =%» Ray Core

ws A O O 8

Source: https://www.anyscale.com/blog/announcing-ray-2-0

hon Worker Java Worker
Py C++ Worker

(No binding)

Frontend Cython binding JNI binding

Core Worker(C++)

Backend Components(C++)

Source: https://www.anyscale.com/blog/modern-distributed-c-with-ray

1.6 OpenXLA

* https://github.com/openxla

An open-source ML compiler ecosystem co-developed by Alibaba, AWS, AMD, Apple, ARM,
Google, Intel, Meta, NVIDIA, and more, which using the best of XLA
(https://www.tensorflow.org/xla) & MLIR.

It aims at accelerate and simplify ML development by defragmenting the ML stack across
frontend frameworks and hardware backends.

PyTorch JAX TensorFlow

StableHLO

Target-independent
Optimizer

0pen X 'Ig,ﬂ" Hardware specific backends

86 CPU MVIDIA GPU

ARM CPU Bring Your Own Accelerator:
LLWM Proprietary or 055

Source: https://pvtorch.s3.amazonaws.com/posters/ptc2022/H01.pdf

https://openxla.github.io/iree/

An MLIR-based end-to-end compiler and runtime
that lowers ML models to a unified IR that scales
up to meet the needs of the datacenter and
down to satisfy the constraints and special
considerations of mobile and edge deployments.

It adopts a holistic approach towards ML model
compilation: the IR produced contains both the
scheduling logic, required to communicate data
dependencies to low-level parallel pipelined
hardware/API like Vulkan, and the execution
logic, encoding dense computation on the
hardware in the form of hardware/API-specific
binaries like SPIR-V(the industry open standard
intermediate language for parallel compute and
graphics).

For more details, you may refer to our previous talk "IREE--
MLIR-based end-to-end compiler and runtime for Machine
Learning" at OSDT 2022 and the upcoming follow-ups.

IREE Importers
PyTorch|—_ |

“JAX =
TF
. =
[TosA]™~
Plugin i

Source:

Input MLIR

IREE (Intermediate Representation Execution Environment)

IREE Compiler usmg MLIR

flow

&mﬁ%

T e Taget
i Profiling i
ﬂ ! 7Fieedbacx :
<t
Host Code Generation Device Code Ge
cPU -(—1 [m e =l im [EJ Riscv|[xes
[(wasm | [Emitc |« sl spiry | 1] PTx -
M L Vv wAsM |
) I
IREE Modules \l;
[vm ‘ c ' Static lSharedl
iBwecode _S_(BEEEEJ. Library lL‘[braryJ
IREE Runtime \L ~25150KB
Piigne | |
.,_,‘f?'f, |——_J
] ‘ cPU ‘rVulkan |
,‘E\ CUDA || WebGPU
e t " rocm Plugins

{iT:F Target Hardware

https://openxla.github.io/iree/#project-architecture

1.7 The others

* For the rest of technology stack that needed by this topic, please refer to
corresponding part of the topic "Beyond UVM" of mine @DVCon China 2023.

2) Testbeds

* HW/SW
Testbed1: Intel NUC X15 LAPAC71H(32GB DDR5) with Fedora 38(Linux Kernel 6.3.11/6.4.15)
Testbed2: Raspberry Pi4 (8GB LPDDR4) with Fedora 37(Linux Kernel 6.3.8/6.4.12);
Testbed3: VisionFive 2(8GB LPDDR4) with Debian 12(Linux Kernel 5.15).

Choice of RAM

8
ssssss

Install and test from the source directly:

pip install -e . --verbose --user
[mydev@fedora exo-master]$ pip install -e erbose --use

g build_py

[mydev@fedora exo-master]$ pytest

===== 432 passed, 25 skipped, 4 warnings, 30 errors in 1784.47s (0:29:44) ======

For Install and Test Exo on master branch with last commit 700fe3bb00ab9564eadf35787cha60edd02e92c0) on Testbed2

2) Mojo/xDSL
2.1 Mojo
2.1.1 llama2.mojo

* https://github.com/tairov/llama2.mojo
Inference Llama 2 in one file of pure G
why this port?

This repository serves as a port that provides a Mojo-based implementation of 1lama2.c .

With the release of Mojo, | was inspired to take my Python port of llama2.py and transition it to Mojo. The result? A
version that leverages Mojo's SIMD & vectorization primitives, boosting the Python performance by nearly 250x.
Impressively, the Mojo version now outperforms the original 1lama2.c compiled in runfast mode out of the box
by 15-20%. This showcases the potential of hardware-level optimizations through Mojo's advanced features. | think
this also can help us to see how far can we go with the original 11ama2.c hardware optimizations.

Performance

'S Since there were some debates was this comparison legit or not | did some research and found that in runfast

mode 1lama2.c includes multiple optimizations like aggressive vectorization, which makes comparison fair with
Mojo SIMD vectorization.

Further researches of both solutions in parallelized mode compilation showed that 1lamaz.c is faster by ~20% I'm
still investigating in this direction since not all the possible optimizations were applied to the Mojo version so far.

benchmarking

OS/HW specs

0S: Ubuntu 206.04

CPU(s): 6

Model name: Intel(R) Core(TM) i7-876@ CPU @ 3.206GHz

CPU MHz: 3191.998
llama2.c llama2.c .

Model llama2.py llama2.c : llama2.mojo
(runfast) (OMP/parallelized)
. . 75.73 237
stories15M.bin 1.3 tok/s 450 tok/s 260 tok/s
tok/s tok/s
stories110M.bin - 9 tok/s 30 tok/s 64 tok/s 40 tok/s

llama2.mojo
(parallelized)

390 tok/s

57 tok/s

llama2.mojo
(naive
matmul)

67.26 tok/s

9.20 tok/s

2.2 xDSL

Install and test from the source directly:
pip install -e . --verbose --user

emu,
rt-stencil-t

700fe3bb00ab9564eadf35787chab0edd02e92c0) on Testbed2

3) Acton

Install and test from the source directly:
make -jS(nproc) & make test

Final compilatio
/fopt/MyWorkSpace/M
uages/ Acton/0
ot/ MyWorkSpace/MyProjs/L anguaqau_cmn,mr ic
e/ MyProj szLa1gllagzs’J\(t"'}’0f‘
Relea t
fMyWorkSpace/MyProj s:Languagesu'm
on/0fficial/acton-main/dist -
ial/acton-main/dist/ Sk
i oat /HyWorkSpace

fopt/MyWorkSpace/MyProjs/L
cache/acton/build-cache --p fo
x fopt/MyWorkSpac
Dtargetsaarch6d-1inux-gnu.2.27 -Dopt
se =/opt
KkSpace/MyProjs/Languages/Ac
ro)s/Languages/Acton/0ff1c

/MyWorkSpace/MyPre)s/Languages/Acton/01f icial/act

anguages/Acton/0fficial/acton-main/dist/Lib/rel

ished final compilation step in 35.729
el/1ib/LibActon.a dis nAc tor

a
t/deps/libargp di 1 d'stfdeas, ibge dist/deps/L
tflproc dist/deps/Libuuid dist/ ist/deps/1ibxm

En ing directory "/opt/MyWorkSpace,
dist/deps/libargp’ is up to dat
dist/deps/libbsdnt’ is up to date.
dist/deps/libgc’ is up to date.
dist/deps/libnetstring’ is up to date
dist/deps/libprotobuf_c' is up to date.
dist/deps/libutféproc’ is up to date.
dist/deps/libuuid’ is up to date
dist/deps/libuv’ is up to date.
dist/deps/libxml2’ is up to date
dist/deps/libyyjson’ is up to date
dist/deps is up to date.

ing dist/deps/libprotobuf_c dist/deps/libu

2 dist/deps/libyyjson dist/deps/pcre2

FActon/0fficlal/acton-main’

Leaving dire f 4 un.kspamnayv.mma guaqnc:n[

Leaving di

ompiler stack test

ck/p ograns/aarché‘ 1
I.| /hom

t of 123 tests

for package acton-
i exited with: ExitFailure 1
Logs printed to console

make: *#*+ [Makefile:349:

Patching for AArch64 as Acton officially only
support X64:

[mydev@fedora acton-main]$ git status
On branch main
Your branch is up to date with 'origin/main'’

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

ast commit 991188fb72fd441028ebd44d5980b77f94361d2f) on Testbed?2.

Il. Practice & Exploration

mkdir -p deps-download
curl -o deps-download/zig-linux-x86_64-0.11.0.tar.xz https://ziglang.org/download/@.11.8/zig-1inux-x86_64-0.11.0.tar.xz
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --i--i-- —-ie-ie- —-ie-i-- 0 0 42.8M 0 97011 0 0 346
0 0:02:06 --:--:-- 0:02:06 345k"M 44 42.8M 44 19.2M 0 0 15.0M 0 0:00:02 0:00:01 0:00:01 15.
87 42.8M 87 37.5M 0 0 16.0M 0 0:00:02 0:00:02 --:--:-- 16.6M"M100 42.8M 100 42.8M 0 0 15
0 0:00:02 0:00:02 --:--:-- 15.8M
mkdir -p dist/z1ig
cd dist/zig tar Jx --strip-components=1 -f ../../deps-download/zig-1inux-x86_64-0.11.0.tar.xz
rm -rf dist/zig/doc dist/zig/lib/libcxx dist/zig/lib/libcxxabi dist/zig/lib/1libc/include/any-windows-any
cp -a deps/zig-extras/* dist/zig
make : Leaving directory '/opt/MyWorkSpace/MyProjs/Languages/Python/DSLs/Acton/0fficial/acton-main'
make distribution

cd compiler unset CC unset CFLAGS stack build --dry-run 2>&1 | grep "Nothing to build” X
(sed 's,”version:.*,version: "0.16.0.20230917.19.15.6","' < package.yaml.in > package.yaml \

stack build --ghc-options='-j4 ' \
stack --local-bin-path=. install 2>)

Preparing to install GHC (tinfo6) to an isolated location. This will not interfere with any

system-level installation.

Preparing to download ghc-tinfo6-8.10.7 ...

ghc-tinfo6-8.10.7: download has begun

ghc-tinfo6-8.10.7: 289.64 KiB / 207.64 MiB (0.14%) downloaded...

ghc-tinfo6-8.10.7: 1.23 MiB / 207.64 MiB (0.59%) downloaded..

mv /opt/MyWorkSpace/MyProjs/Languages/Python/DSLs/Acton/0fficial/acton-main/dist/depsout/bin/actondb dist/bin/actondb

rmdir /opt/MyWorkSpace/MyProjs/Languages/Python/DSLs/Acton/0fficial/acton-main/dist/depsout/bin

ghc-tinfo6-8.10.7: 1.40 MiB / 207.64 MiB (0.67%) downloaded..

ghc-tinfo6-8.10.7: 1.70 MiB / 207.64 MiB (0.82%) downloaded..

test_acton_rts_sleep:
test_net:
test net_tcp:
test_logging:

stdlib
time:

1 out of 128 tests failed (35.00s)

Testbedl

4) Ray
4.1 Distributed simulation and verification

. I |
ntend n
Future? -e..ime | S
' [p— T L |
i I 1 -oe!\s
: : Verible : Inhhr?::‘“ 1
SystemVerilog | | rdepi> ! Bridge | Fonan |
Design H ol : I conmnt
- - : Surelog ; Nl
' . T —
: : Backend
Simulatable
o | : : I U l mulal
-— - | ! lcarus
i . UVM
I i |)¢ New distributed
Sl ! :I . Simulator 1__s
Source: “Using On-Premise FPGAs and Distributed Metasimulation”, — . ! M' 2
Abraham Gonzalez, ISCA 2022. Source: https://github.com/chipsalliance/UHDM/blob/master/images/UHDM_future.png
* Trying to use Acton to reconstruct Cocotb for parallelly running the Python testbenches across in a

distributed cluster system with various RTL simulators, or even make an attempt to re-implement a
distributed RTL simulator by Acton. By the way, distributed simulation and verification are the future
trends in HW verification as we can observe:

Clustering at Edge

Method 1: Method 2:

9 .: ;
B meB

L : -
‘W
=
-

N
.-‘
]
‘'l
-

&
= »
b= | I ad 9 |

g

Source: https://turingpi.com/product/turing-pi-2/

Il. Practice & Exploration
4.2 Beyond Kubernetes

Source: “Ray - A Swiss Army Knife for Distributed Computing & Al”; Feng Li, COSCon,2022. . "
First exploration of beyonding Kubernetes

Il. Practice & Exploration

4.3 Re-design and re-implementation of Ray

Storage () < Microserver) Al
Cluster
\ Voo RAY
Jrm e ; _‘______,/ -
Networking

Source: “Ray - A Swiss Army Knife for Distributed Computing & Al”, Feng Li, COSCon 2022.

Our Rayll Series

Rayll.Rust (has some work done)

Rayll.Java (upcoming)

Rayll.Acton (focus on replace Haskell with Zig in the compiler of Acton firstly)
Rayll.Net (has some preliminary work done)

Rayll.Graal (long-term)

Rayll.Zig (long-term)

Rayll4HCI (in the design and early experimental stage)

lll. Future Work
1) Next generation system language

A desired next generation system lanquage for HW-SW co-development

Source:

Our technology roadmap:

Method1: 6 Mojo (if it will be open source in the future)

Method2:

Method3: D c::) '

For more materials, you may refer to our previous talks "Will D be a
better system programming language" at Openinfra Days China 2022
and "First exploration of D for HW-SW co-designed system" at 1st
OSEDA Workshop China 2022 and the upcoming follow-ups.

And how about a lightweight re-implementation of LLVM?

2) New VMs for emerging workloads

IREE Runtime:
Application
Model

Existing ML stack bundling:
* Significant context
* Knowledge of high-level ops

IREE does not have a (LBl * Model runtime optimizations

traditional “fat” runtime that MB or
bundles everything. more

* Fat kernels for high-level ops
* Threadpool & scheduling logic
* Redundant error checking

T elc.

As a one-for-all solution

IREE provides an almost
zero-cost virtual machine for
interpreting host scheduling
ops compiled from ML models.
It just performs lightweight
math for workload size
calculation and performs task
scheduling.

Hardware

s

IREE compiler

VM bytecode Native code for
different ISAs

[
v
Application VM
bytecode
Optional IREE | Optional IREE Il
VM interpreter HAL library KB

Hardware

Source: “IREE: standard-/compilation-based ML stack via Vulkan/SPIR-V”, Lei Zhang, Khronos ML Webinar 2022.
Rethinking the architecture & design of new virtual machines for emerging workloads...

Mojo is a great innovation which indicates Al-driven programming language in
the future and how they will interact with modern toolchains such as LLVM.

The deep superposition of the ecosystem of Python and LLVM will far beyond
our imagination, especially for the field of Al-assisted hardware design and
verification.

There will be a golden age for Python-based DSLs in FOSS EDA.

Python & its DSLs are changing the way we think about hardware development!

