
WanZheng Weng, DatenLord

Agile Digital Chip Design with
SpinalHDL and Cocotb

About Us
DatenLord aims to break cloud barrier by deeply integrating
hardware and software to build a unified storage-access
mechanism to provide high-performance and secure storage
support for applications across clouds.

GitHub: https://github.com/datenlord;
Website: https://datenlord.github.io/;

We are using advanced HDLs, like Bluespec and SpinalHDL,
and new verification tools, like Cocotb, to develop high-
performance RDMA network interface card.

Why we need agile hardware

design?

- Introduction -

CONTENTS

Introduction

01

A Scala package featured in

efficient hardware design.

- SpinalHDL -

Design Using SpinalHDL

02

Python-based testbench environment

for verifying RTL designs

- Cocotb -

Verification with Cocotb

03

Introduction

01

Ø Why Agile Chip Design?

Why Agile Chip Design?

Ø Moore Law and Dennard Scaling slows down, hard to improve performance further;
Ø Emerging Applications, like LLM and Crypto, demand huge computation power;

Why Agile Chip Design?

Ø Adopt domain-specific architecture to gain better
performance-power ratio:

Ø The architecture of chip becomes more diverse
and design complexity surges;

Ø Democratize chip design for more companies and
designers;

 - AI accelerator;
 - Smart NIC;
 - Cryptography;
 - Video coding/encoding;

Design with SpinalHDL

03

Ø What is SpinalHDL?
Ø Why SpinalHDL?

What’s SpinalHDL?

Ø An efficient HCL(Hardware Construction Language)
embedded in Scala;

Ø A Scala package providing APIs to describe circuits and
generate Verilog codes;

Ø Problems with Verilog/VHDL:

 - Poor parameterization ability;
 - Loose error checking;
 - Tedious net connections;
 - ...

What’s SpinalHDL?

Ø Not HLS;
Ø Same description granularity as traditional HDLs;
Ø SpinalHDL is a super set of Verilog/VHDL;

General Digital Circuit:

- Clock Domain;
- Combinational paths;
- Sequential parts;
- Signals and connections;
- I/O;

Why SpinalHDL? - Expressiveness

Ø Utilize advanced language features of Scala to describe circuits:

- Object Oriented;
- Recursion;
- Collection types and methods;
- Function programming;

Why SpinalHDL? - Expressiveness

Ø A Simple Demo - Adder Tree:
- Implemented through recursion

- reduceBalanceTree method

Why SpinalHDL? - Expressiveness

Ø Other Regular Circuits:
- FFT(Fast Fourier Transformation)
- Bitonic sorter

Why SpinalHDL? - Reliability

Ø More accurate model:
• Registers in Verilog:
 - always block + sensitive list;
 - if else;
 - blocking/non-blocking assignments;

• For SpinalHDL, reg is embedded in language level:
 - Reg/RegNext/RegInit;
 - ClockDomain;

• SpinalHDL provides richer finer types for signal:
 - Bits / UInt / SInt / Vec

Why SpinalHDL? - Reliability

Ø Early DRCs:

Ø Separate Design and Simulation Elements:

- Semantic problems could be found by the type system;
- Problems introduced by implicit width expansion or reduction;
- Latches could be found before generating Verilog/VHDL code;

- Verilog can be divided into synthesizable and unsynthesizable;
- It is confused to separate these two parts;
- No needs to consider“synthesizable”in SpinalHDL;

Why SpinalHDL? - Reusability

Ø Object Oriented and Strong Parameterization:

Ø Community and tools:

Ø Abundant Libraries of Circuit Components:

- FIFO, RAM/ROM, Counter;
- Bus: AXI/APB/AHB;
- VexRiscv, NaxRiscv and SoC framework

- Reuse Java packages;
- Convenient build tools sbt/mill, intelligent IDE;

- Handle relations and restrictions between parameters;
- Optimize architecture for a specific set of parameters;

Verification with Cocotb

03

Ø What is Cocotb?
Ø Why Cocotb?
Ø A Specific Cocotb Demo

What’s Cocotb?

Ø A bridge/interface between Python testbench and RTL simulator；
Ø Enable you write hardware testbench like software in Python;

• RTL simulator providing VHPI/VPI/GPI;

• Hardware Design in Verilog/VHDL;

• Python testbench using Cocotb API;

Components in Cocotb Verification:

Why Cocotb?

Ø In the perspective of language itself:

- more productive and succinct than VHDL/SV;
- abundant language features: OO, FP;
- Easy to learn and master;
- Popular language: easy to find engineer;

Example: Big Integer Multiplication in Crypto

- Simplest C++ implementation uses 40 lines;
- Only 1 line in Python;

Why Cocotb?

Ø In the perspective of Community:

- Prosperous open-source community;
- Abundant and diverse libraries;
- Easy-to-use package management;
- Reduce workload and ensure correctness;

Package Stack for Cocotb-based Verification

- Generate UDP/IP/Ethernet packet generator with support for RoCE;
- Additional ICRC is appended in the tail of IP packet;
- Takes in payload stream and header information;
- Generates complete UDP/IP/Ethernet packet stream;

A Specific Cocotb Demo

Ø Design Under Test:

output m_axis_tvalid
output[511:0]m_axis_tdata
output[63:0]m_axis_tkeep
output m_axis_tlast
output m_axis_tuser
input m_axis_tready

input s_data_stream_tvalid
input [255:0]s_data_stream_tdata
input [32:0]s_data_stream_tkeep
input s_data_stream_tfirst
input s_data_stream_tlast
output s_data_stream_tready

input s_udp_meta_valid
input [31:0]s_udp_meta_ip_addr
input [5:0] s_udp_meta_ip_dscp
input [1:0]s_udp_meta_ip_ecn
input [15:0]s_udp_meta_dst_port
input [15:0]s_udp_meta_src_port
input [15:0]s_udp_meta_data_len
output s_udp_meta_readyinput s_mac_meta_valid

input [47:0]s_mac_meta_mac_addr
input [15:0]s_mac_meta_eth_type
output s_mac_meta_ready

A Specific Cocotb Demo

Ø Testbench Architecture:
- Sink/Source: abstract valid-ready ports into a python function using cocotb-axi;
- gen_random_pkt: generate random UDP/IP/Ethernet packet using scapy;
- drive_dut_input: drive input ports by calling corresponding function;
- check_dut_output: receives and check reference packets;

A Specific Cocotb Demo

Ø Key Codes:

- check_dut_output: receives and check reference packets;

- gen_random_pkt: generate random UDP/IP/Ethernet packet using scapy;
- drive_dut_input: drive input ports by calling corresponding function;

Related Links

Ø Datenlord GitHub: https://github.com/datenlord;
Ø SpinalHDL: https://github.com/SpinalHDL/SpinalHDL;
Ø Cocotb: https://www.cocotb.org/;
Ø blue-ethernet: https://github.com/wengwz/blue-ethernet;

Thanks

