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Abstract 

When implementing an SoC chip, Clock Domain Crossing (CDC) verification guarantees no 

metastability-induced bugs on the clock domain crossing paths. Typically, we perform CDC checks 

at the RTL layer based on the understanding that synthesis tools will not change the functional 

behavior of RTL code. LEC tools further guarantee the functional equivalence between the RTL 

code and the netlist. This also helps in the shift-left of CDC verification. 
 

However, as the designs and implementation flows become more complex, significant logic 

optimizations are introduced during RTL synthesis and backend flows. The primary objective of the 

implementation flow is to meet the PPA (power/performance/area) goals, and current 

implementation flows do not have the sense of the clock domain crossing information. Thus, current 

implementation flows might perform improper transformation and optimization on the CDC paths. 

Although these improper transformations and optimization do not change the functional behavior, 

a change in the location of CDC blocking logic, as well as implementing glitch-free mux with glitchy 

And-Or-Inverter structure, may lead to the introduction of new potential CDC issues and make the 

actual silicon unstable. Even when the RTL & Netlist LEC are performed successfully, new CDC 

issues can still be introduced and observed on the netlist. 

 

In this paper, we first discuss the CDC issues during RTL to Netlist transformation during synthesis 

with detailed examples, such as glitches introduced on mux logic, glitches on implementation 

inferred clock gating logic. Further, we will present a proposed solution for exposing the potential 

silicon failures with netlist CDC Verification flow. Finally, the innovative static and synthesis cross-

technology solution, ‘static-aware synthesis flow’ will be discussed. 
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1. Introduction 

1.1 Background 

With the development of technology, the integration level of digital circuits is increasing, and the 

design is becoming more complex. In a typical SOC chip, there are often multiple clocks, which 

can be either synchronous or asynchronous to each other. Clock domain crossing (CDC) issues may 

occur if logic paths exist between asynchronous clocks. 

 

CDC check is the verification of asynchronous paths in a chip. Since asynchronous clocks do not 

have a fixed phase relationship, it will likely result in setup/hold violations, leading to metastability 

issues. We adopt synchronous design methods to ensure that metastability does not propagate 

randomly in the circuit, thus avoiding functional issues. 

 

Currently, most digital designs are based on RTL design. It is difficult to achieve 100% "clock 

domain crossing" coverage through direct RTL checks, especially in modern SOC designs that 

integrate many IPs. The verification of synchronous circuit design is performed using dedicated 

EDA tools for CDC checks. This article will illustrate the process using Synopsys's VC SpyGlass 

CDC tool. 

 

The primary function of VC SpyGlass CDC is that it has predefined rules that check the design to 

see for compliance. If there are any violations of the rules, it will report these violations to the 

designers for debugging. Different rules are divided into several major categories, referred to as 

goals. It will first perform setup rule checks on the design and constraints, such as whether each flop 

has a defined clock, whether the reset signal is determined, etc. After passing the setup rule checks, 

it will perform a series of CDC checks if signals cross clock domains without going through 

synchronizers, if the same signal is synchronized multiple times within the same clock domain, etc. 

All designs that do not comply with the rules will be reported, and they can be presented to designers 

in the form of schematic, spreadsheet, and text reports. There will also be detailed rule descriptions, 

explanations of why the design violates the rule, and corresponding modification suggestions. VC 

SpyGlass CDC leverages inbuilt formal methodology under the hood leading to reduced 

dependency on writing test cases and running simulations to find CDC issues. Using VC SpyGlass 

CDC can help identify CDC issues earlier, more comprehensively, and faster. 

1.2 Motivation 

As mentioned earlier, regardless of the EDA company, the current industry-standard CDC process 

involves performing checks on the RTL. Over the years, we have found that the main problem with 

this RTL checking flow is that during synthesis, RTL to the gate-level circuit conversion potentially 

leads to unpredictable behavior for CDC paths already proven during RTL CDC verification. These 

unexpected CDC paths cannot be detected during RTL CDC check phase because these do not exist 

at RTL. We have mainly identified the following two types of issues:  



(1) The first issue is the glitch propagation across clock domains caused by the MUX logic in the 

asynchronous FIFOs. As shown in Fig.1, the glitch issue lies in the MUX logic between the 

green clock domain and the red clock domain. 

 

Fig.1 A circuit diagram of an asynchronous FIFO. 

 

The original RTL code is expressed as Fig.2 for this clock domain crossing MUX logic. 

 

Fig.2 Verilog code for mux logic in the asynchronous FIFO. 

 

The corresponding synthesized design for the above RTL code comprises a series of logic gates 

involving MUX logic. This logic cannot guarantee that the final selection stage has a qualifier on 

each bit, which may result in glitches propagating to the downstream clock domain when the select 

signal remains unchanged while register A0~A2 flip. If the destination clock samples this glitch, it 

will cause the design to fail. These risky paths due to glitches can be detected using the netlist CDC 

tools. As shown in Fig.3, the corresponding modification approach is to instantiate the “AND” logic 

between sel and data using standard library cells, ensuring that this layer of qualifier combination 

logic isn’t be optimized out. 



 

Fig.3 The proposed modification method for the MUX glitch issues. 

 

(2) The second issue concerns the clock enable logic inserted by the synthesis tools in front of the 

destination clock domain. 

As shown in Fig.4, it is a typical structure of an asynchronous FIFO, and the signals passing from 

the source (green) clock domain to the destination (red) clock domain is qualified. However, the 

synthesis tool automatically inserts a clock gate cell to the destination  register B during the 

optimization phase. In the synthesized design, one possible scenario is that the enable input of this 

clock gate cell is driven by the combinational logic output from the asynchronous source clock 

domain. In this case, the timing violation at the enable input of the clock gate cell may cause glitches 

at the clock output, which poses a significant risk on the clock path and cannot be ignored. 

 

This issue cannot be detected in the RTL CDC flow because the clock gate cell in the dashed box in 

the diagram is inserted during the synthesis process. Since the synthesis tool cannot obtain the 

masking information of the qualifier signals on the asynchronous path when inserting the clock gate 

cells, the cross-asynchronous paths are split. As a result, the cross-asynchronous combinational 

logic with qualifier goes through the D input of the B register, while the cross-asynchronous 

combinational logic without a qualifier goes through the E input of the clock gate cell in front of the 

B register, causing the glitch hazard on the clock path. 

This issue can be mitigated by following specific coding style guidelines. The following rules should 

be taken into consideration when coding the asynchronous logic: 

⚫ Avoid using cross-asynchronous combinational logic. Using qualify signals is preferable to 

synchronize asynchronous signals to the target clock domain. This can help avoid the 

synthesis tool splitting cross-asynchronous combinational logic when inserting the clock 

gate cell to optimize the clock gating ratio. 

⚫ Avoid using asynchronous signals as the conditional statements in the “else if” within an 

always block. 



 

Fig.4 A circuit diagram of an asynchronous FIFO. 

 

Both logic types are located at the transition points on the cross-clock domain path. Improper 

synthesized circuits may result in the propagation of glitches being sampled by the destination clock 

domain, leading to the metastable states in the logic of the destination clock stages. Checking CDC 

on the netlist can effectively identify the risks introduced by the two types of logic generated by the 

synthesis tool. Furthermore, for the second type of issue, a CDC-aware synthesis flow can be 

employed to avoid clock gating issues. Therefore, the following sections of this article will discuss 

specific issues identified during the execution of real projects, as well as provide detailed 

explanations on how to use netlist CDC flow to check and fix the corresponding problems. 

2. Solutions with CDC Netlist Flow 

2.1 Analysis of the Netlist CDC Flow 

When there is a large amount of combinational logic between the source register and 

destination registers in a CDC transfer, the design behavior may differ from the expected behavior 

after the synthesis optimization. To avoid such inconsistencies, performing a CDC check on the 

generated netlist is necessary. 

2.1.1 Functional Glitch Check Analysis 

As shown in the previous Fig.1, it is a standard structure of an asynchronous FIFO circuit, where 

the source (green) clock and the destination (red) clock are asynchronous. When the data is stored 

in the green clock domain, the corresponding write address is converted to gray code and 

synchronized to the red clock domain. Each time the data is accessed from the FIFO, the relationship 

between the write address and the read address is used to determine whether the data in the FIFO 

can be accessed. If the access requirement of the FIFO is met, the data stored in the green clock 

domain FIFO will be selected and output to the destination red clock domain through combinational 



logic. From the perspective of the designer, the expected functionality of this cross-clock domain 

combinational logic is that when the read address remains unchanged, the combinational logic 

selects one data from one entry in the FIFO for output, which means that the read address and the 

FIFO entry should satisfy one-one mapping requirement. Otherwise, if the read address remains 

unchanged but the data flips, the red clock domain may receive data with glitches. 

 

Fig.5 shows the actual circuit structure of the asynchronous FIFO after being optimized by the 

synthesis tool. There is a complex combinational logic between the source clock register and the 

destination clock register. If we rely on the manual inspection of the glitch hazard, it will take a 

significant amount of time to determine whether this circuit segment poses a risk of generating 

glitches. To quickly check if the cross-asynchronous domain logic circuits can produce unexpected 

glitches, the functional glitch check feature of the VC SpyGlass tool can be used.  

 

Fig.6 shows the result of checking the netlist CDC without the functional glitch check feature, where 

the tool identifies paths in the netlist that may contain glitch circuits, most of which are related to 

asynchronous FIFO paths.  

 

Fig.7 shows the paths where the tool identifies potential glitch circuits by using the functional glitch 

check feature. The number of paths indicated in Fig.6 and Fig.7 indicates that the formal check helps 

filter out a significant number of low-risk paths, reducing the effort of the manual check by designers.  

 

 
Fig.5 Synthesized Async FIFO circuit. 

 

 

Fig.6 Netlist CDC result without functional glitch check. 

 



 

Fig.7 Netlist CDC results with functional. 

2.1.2 Static-Aware Synthesis Flow 

 

Fig.8 Data being qualified across the clock domain. 

 

 

Fig.9 Synthesized circuit for the data being qualified across clock domain. 

 

Fig.8 shows the structure when asynchronous data is synchronized to the asynchronous clock 

domain though the qualify signal. A register and B register correspond to asynchronous clock 

domains, and the empty signal in the B clock domain serves as the qualify signal for the output of 

the A register. When the output of A register changes, the empty signal is set to 0, blocking the 

asynchronous data transfer. When the output of A register stabilizes, the empty signal is set to 1, and 

the output of A register is synchronized to B clock domain. In the RTL state, this structure is just 

quite normal CDC logic. 

Fig.9 represents the circuit structure of Fig.8 after synthesis. After optimization by the tool, and 

clock gate cell is inserted between the A register and B register. This inserted clock gate cell controls 

the clock switch of the B register, which the qualified signal “empty” remains at the data pin of the 

B register. In this synthesized circuit, the empty signal cannot gate the changes of the A register, 

resulting in a timing violation at the clock gate cell, which may affect the functionality of the 

asynchronous FIFO. 



 

 

Fig.10 CDC report for the unqualified clock gating path. 

 

Fig.11 CDC reports for the unqualified clock gating path after applying static-aware DC 

methodology. 

 

 Fig.10 shows the paths of asynchronous signals at the clock gate cell that are not gated by the 

qualified signals when checking the netlist with the VC SpyGlass tool. Fig.11 shows the results after 

using the static-aware DC flow and checking with the VC SpyGlass tool. By identifying specific 

paths and not inserting clock gating cells on such paths, the separation of the asynchronous signals 

and the qualified signal is avoided.  

 Without using the static-aware synthesis flow, the insertion ratio of the clock gate cell in this 

example block is 88.36%. After using the static-aware DC flow, the insertion ratio of the clock gate 

cell in this same example block is reduced to 86.29%. This reduction signifies the reduction in the 

number of potentially problematic CDC paths which might have led to silicon failure if not 

addressed. 

2.2 Netlist CDC Issues 

Modern implementation flows can involve significant structural changes via advanced techniques 

like logic optimization, clock gating insertion, retiming, ECOs(Engineering Change Order) 

insertion, Low Power cell insertion. As Figure 12 demonstrated, these structure changes account for 

a significant design percentage of which the RTL CDC signoff flow no longer can be relied upon, 

Glitch and Clock Gating issues mentioned in section 1.2 both belong to these typical kinds of 

CDC issues that pop-up on netlist. VC SpyGlass Netlist CDC solution provides complete 100% 

signoff on netlist CDC signoff and ensures such issues on netlist design won’t occur. 

 
Fig.12 Typical Netlist CDC Issues. 

 



2.2.1 VC SpyGlass Netlist CDC Flow 

As Figure 13 demonstrated, VC SpyGlass Netlist CDC Flow leveraging inbuilt PrimeTime netlist 

parser, significantly improving the design read runtime. It also supports Primetime setup reuse, 

which makes the setup flow of Netlist CDC much easier and more effective. 

 

Fig.13 VC SpyGlass Netlist CDC Flow Diagram. 

 

2.2.2 Functional Glitch Flow 

During the Netlist CDC Signoff review stage, it is observed that the structure of CDC Glitch on 

netlist could become quite complicated. The typical case is that complex combinational logic exists 

on the glitch paths, making the glitch result review more tedious and time-consuming. This leads to 

a need for netlist CDC functional glitch analysis. As shown in Fig. 14, this flow filters the functional 

glitch-free CDC paths by leveraging Formal techniques, only indicating the real glitchy functional 

paths for the users to review. This ensures that the overall review cycle that the designer needs to 

spend is significantly reduced. 

 

Fig.14 VC SpyGlass Netlist CDC-Functional Glitch Flow. 

 

If the CDC glitch path is flagged as a formal pass, the glitch is just a glitchy structural path, and no 



real functional glitch will happen. Suppose the CDC glitch path is flagged as a formal fail, then VC 

SpyGlass CDC will generate the functional scenario causing the failure, and the scenario can be 

reviewed through Verdi waveform and schematic GUI. This is how VC SpyGlass Netlist CDC flow 

results in lower noise and makes the CDC signoff flow more effective and productive for designers. 

2.2.3 Static Aware Implementation Flow 

The clock gating issue mentioned in section 2.1.2 can be extracted as Fig. 15. 

 

Fig.15 Asynchronous signal moves to Clock Gating Enable. 

 

The synthesis tool is unaware of clock domain crossings, and optimizations are built to enhance 

Power, Performance, and Area (PPA) only. If clock domain crossing paths are restructured during 

these optimizations, it might cause asynchronous signal moving from Data Path to the Clock Gating 

Enable path. The RTL and Netlist still can pass the logic equivalence check, but Clock Gating Cell 

might go into metastable, which leads to gate-level re-verification of the netlist, it is time-consuming 

and might lead to re-synthesis if errors are found. 

For this issue, the synthesis tool usually supports user constraint to exclude some specific logic 

applied on clock gating enable, that can stop the tool from inferring async clock gating logic as a 

clock enable logic. designers may proactively apply these types of constraints during synthesis, but 

the necessary effort can become significant if all these constraints need to be developed manually. 

 

Fig.16 Static Aware Implementation Flow. 

 

To address this challenge, Synopsys developed this static-aware synthesis flow (Fig. 16); VC 

SpyGlass analyzes the CDC paths from the static timing analysis perspective and provides an 

encrypted database to the synthesis tools. These constraints are then applied to the synthesis tools 

like Design Compiler NXT or the Fusion Compiler to avoid undesired optimizations/corruptions of 

the already pre-verified CDC paths. Hence, within this static-aware synthesis flow, the VC SpyGlass 

generated Static DB is used as input for an optimized synthesis flow that doesn’t disrupt the pre-

verified CDC paths. Designers can also run VC SpyGlass netlist CDC signoff flow reusing the 



Static-Aware synthesis setup, to double confirm no CDC issue introduced by ECO/UPF logic 

insertion left on final netlist. 

3. Conclusion 

The functional glitch check technology of VC SpyGlass, leveraging inbuilt formal techniques, 

provides an accurate way to suppress the functional glitch-free paths on netlist designs. With this 

clock-domain crossing solution, designers can more efficiently locate the netlist CDC path where 

the real glitch problem exists. For risky paths, designers can optimize both the design and 

implementation to eliminate Netlist CDC Glitch Risk on Silicon. 

Similarly, Static Aware Implementation Flow leverages proven VC SpyGlass CDC signoff 

technology in Design Compiler/Fusion Compiler implementation stage; this cross-technology 

solution obtains the clock domain information through VC SpyGlass CDC engine, predictably 

controls the gated clock optimization, creatively provides the user with the safety RTL to Netlist 

conversion.  

These cross-technology solutions innovatively help designers eliminate silicon failures introduced 

by the transition from RTL to Netlist and lay a solid foundation for silicon timely tape-out and mass 

production. 
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