
[AMD Official Use Only - General]

 Global variable in DPI
To summarize, supporting multiple instances of an IP in a SystemVerilog testbench for DPI global

variables can be solved by following steps:

 Create a wrapper singleton class.

Begin by designing a singleton class that encapsulates all global variables as member variables.

Introduce a new global variable pointer, termed IP_GLOBAL_CONFIG, to facilitate easy access to

the singleton by legacy functions.

Update all references to the original global variable to include this pointer reference. For instance, if

the global variable is m_status, modify it to IP_GLOBAL_CONFIG->m_status (refer to line 15 in

Fig.8). Although this involves altering numerous lines of code, a simple global search and replace can

achieve it. To validate the completeness of these changes, run a testbench compile.

 Adapt the Singleton IP_GLOBAL_CONFIG to a Multidimensional Array Format

The last step is to update all DPI calls to include the index of this IP. (Line 14 in Fig 8) With this

update the correct instance of singleton can be chosen.

 Enhancing Singleton
To make a singleton class scalable, introduce a multidimensional array, like m_object in Fig. 3, to

static member variables. Each m_object links to an IP instance. Modify the constructor to select the IP

instance, using indices like m_object[X][Y] for SOC packageX and dieY.

With minimal code changes, as shown in Fig. 6, only the constructor and m_object references need

updating. In the SOC context, the singleton reference should include the index, preserving all

singleton advantages. Users identify IP instances to the access function, and all functions remain

consistent. For clarity, consider Fig. 7's output, where objSingle1 and objSingle2 represent different IP

instances. Each m_status is modifiable individually. Any missed updates trigger a VCS compilation

error for correction.

#include "svdpi.h“

enum Status_e {RESET, INIT, RUN, FINISH};

Status_e m_status;

void dpi_sample(const int I1)

{

printf(m_status);

...

}

Scale IP UVC in SOC testbench

Fig.4 singleton test code

 Global Variable used in Direct Programming Interface (DPI)

Allows external functions written in C/C++ to be used in SystemVerilog. This causes issues when

multiple instances of the same IP are instantiated in an SOC, as illustrated in Fig. 5

Scaling IP UVCs in SOC testbenches presents unique challenges. By introducing tailored solutions and automation tools, we can streamline the verification process and

handle multiple IP instances efficiently. This methodology, backed by successful implementations in flagship projects, paves the way for future advancements in SOC

design verification.

 Singleton Object
This design pattern restricts a class to a single instance and is widely accessible. While this design

pattern is ideal for IP verification utilities, their unique nature complicates scaling within SOCs.

How to make m_status have

different value for different IP

instances in DPI call?

Make m_status a multidimension

array is not a good idea because it is

error prone for memory leak. It will

be a nightmare to debug memory

leak in SOC tb.

Introduction Solutions

Challenges in Scaling IP UVCs in SOC Testbenches

verification environments is

complex. This paper presents a

methodology to adapt IP

testbenches to SOC

environments with minimal

modifications, reducing errors

and enhancing automation.

Majority of testbench scale well except:

 Singletons

 DPI

UVM methodology enables easy duplication of most testbench components in IP, similar to RTL.

However, certain components resist scaling:

As chiplet/multicore SOC designs become more common, the challenge of duplicating IPs

(Intellectual Properties) grows. While duplicating IP RTL modules is straightforward, scaling IP

SOC TOP

SOC UVM ENV TOP

How to instantiate IP

testbench associated

with multiple instances

of IP_X?

Lingkai Shi

Advanced Micro Devices

Fig.7 multi-dimension singleton test code. The difference with classic singleton is highlighted in yellow

Fig.6 multi-dimension singleton example. The revision to the classic singleton is highlighted in yellow.

 Singletons

 DPI

Fig.8 solution for global variable in DPI. Yellow part is original code

Fig.5 DPI global variable issue in multi-die testbench architecture.

Fig.2 Standard UVM solution to scale the IP testbench env

Conclusions

Fig. 1 Scale IP Testbench in SOC

Fig.3 singleton example

IP_X

IP_X

IP_ENV

IP_ENV

IP_X

IP_X

IP_ENV

IP_ENV

Lingkai Shi

Email: lgshi@amd.com

	Slide 1

