
Acceleration Startup Design
& Verification
Tim Sun, Barry Yin, Haifeng Jiang

Agenda

• Enable SW-Driven Verification

• Accelerate Signoff with JasperGold RTL Designer Apps

• Speed Up Verification with Common Methodology For Emulation And
Prototyping

• Accelerate SoC Performance Testing with System VIP

Enable SW-Driven Verification

Software cost is key challenge!

Source: IBS, July 2019

A Lot of Design Details Must Converge
Successfully

Hardware

Software

Vehicle Software Infotainment Software

UI with TTS & Speech Recognition

IPC

System Services

Android

IPC

System Services

Linux

DOMODOMO

Xen

Vehicle Service
Sensors, etc.

Diagnostics,
Calibration,

Configuration

Emergency
Services

Phone BT NAV Cloud
Apps

Wireless
Display
Sync

DLNA Multi-
media Radio

Hardware/Software Co-Verification
During SoC Design

Applications
(Basic to Complex)

Bare-Metal SW

OS and Drivers
(Linux, Android)

SoC

Middleware
(Graphics, Audio)

Chip
Production

Silicon
Bring-Up

Post SiFab

Software-driven design &
verification

Functional
Simulation

Virtual System
Platform 1st Silicon Board

Architecture
Exploration

and
Spec

Definition
Phase

RTLSystemC® RTL RTL

VSP Xcelium™ Palladium® Z1

HW/SW
Emulation

Protium™ X1

Front-End Design and Functional Verification P&R,
Tapeout

SoC Development

6 month 12 month 4 month 3 month

Functional Bug Rate

Typical Duration:

FPGA
Prototyping

Virtual and Hybrid Platform Crucial for
Software Speed

All RTL, SiliconAll Virtual

SoC

OS SoC Drivers

Software Tests

IP

IP Hybrid

RTL
Memory

CPU Sub-system

OS IP Driver

RTL IP

Software Tests

SOC Hybrid

SoC

DDR3 GPUMC

MMP

IP 2

CPU Sub-system

OS SoC Drivers

Software Tests

OS SoC Drivers

Software Tests

DDR3

Emulation, FPGA Proto

SoC

OS SoC Drivers

Software Tests

DDR3

Virtual Models

SW stack

RTL Models

Index

• Pre-Tapeout
Hardware/Software
Validation

Design

Shift Left

• Pre-SoC IP / Driver Validation
& Optimization

• RTL – Palladium or Protium

• Pre-Tapeout Fully Accurate
Hardware/Software
Validation

• Pre-RTL SW Development • Final Hardware/Software
validation

IP and SoC Hybrid Examples

Source: Emulation Enabling Automotive Designs, http://bit.ly/2yR12r8

IP hybrid complementing RTL verification with real SW
drivers, develop, execute, and debug large amount of

software, 6 users in parallel

SoC hybrid with faster OS boots, smoother SoC bring-up
once silicon is back, SW ready to demo product earlier,

OpenGL test suites pre-silicon

Source: DAC

• Linux >1B instructions
o 2 min with virtualization

o 45 min in RTL

• Android >20B instructions
o ~45 min with virtualization

o Hours in RTL

• Windows > 50B instructions
o ~80 min with virtualization

o Days in RTL

PreSilicon Software Validation Focus

• Fastest software execution across engines
• Leveraging abstraction and connecting fastest engines

• Native software debug and configuration across engines and abstractions
• Assembly and configuration for virtual and hybrid
• Native SW debug across abstractions and run time engines

• Open platforms and models
• Virtual Models based on standard SystemC TLM2
• Run time / control framework natively integrated with a heterogenous model

ecosystem
• Tightly integrated with Cadence platforms – Palladium, Protium and Xcelium.

Leveraging Abstraction for Performance

• Virtualization (Models)
• CPU and Interrupt Controller selection is key
• Leverages TLM2 Direct Memory Interface (DMI)
• Virtualize High Activity Peripherals

• Timers, UARTs, Interrupt Controllers, …

• Virtual Reference Platform
• Reference Platform running required software

• Platform completeness depends on requirements
• Start from required software and work back

• Android -> which cpu -> which interrupt controller
• Existing reference platforms

• Android 9 and 10, Linux Multi-core, …

• Hybrid
• Connecting Virtual Platform to RTL

(Palladium/Protium)
• Which interconnect, smart memory, …

CPUWrap TLMGen

3rd party Models
(CPU, GIC, …)

CPU Model

TLM2 wrapper

Peripheral Reg
Descriptions

Develop TLM2
Models

TLM2
Model
Library

SoC

DDR3

Platform Assembly

O
S

S
oC

 D
riv

er
s

S
of

tw
ar

e
Te

st
s

M
an

ua
l C

on
fig

SoC

DDR3 GPUMC

MMP

IP 2

CPU Sub-system

OS SoC Drivers

Software Tests

AVIP
Interconnect Library

& Smart Memory Library

H
yb

rid
 A

ss
em

bl
y

Virtual Prototype Model Generation
Modeling Time Spent on Functionality

Register Descriptions &

Configuration Options

C-API for firmware register access
IP-reg.h

IP-test.c

Pin change & IP register read/write test software

Reg.txt

Register and IP function documentation

IP.CC

TLM 2.0 I/O, register definitions, and read/write functions

IP.CC

Generated
TLM 2.0 software

* Register read/write functions

* Pin change functions

* Reset functions

{
 Functionality (…);
}

*.o

Func.CC

OR

Source functionality

Binary models

IP-XACT
or

RDF

• Cadence RDF
• IP-XACT

Register Window GUI

Virtual Platform Debug
SystemC/TLM Aware Debug

SystemC
Threads and
Methods in

sidebar

SystemC/
C++/C

Variable
Watch

Window

Call
Stack

Source Code
View

Debug and
Simulation
Console

Activation of
SystemC
processes

SystemC
Module

Hierarchy

Device
Registers
with Bit
Fields

Unified Hardware / Embedded Software Debugging
Fully Transparent and Integrated Across Both Domains

Source,
Register, and

Process
Debugging

Breakpoints &
Probing

Common
Trace Views

Software Debug View Hardware Debug View

System
Memory &

Memory Maps

• Set break points in either hardware or software
• Single step in hardware or software
• Debug individual cores in multi-core system
• View register and memory views for each core

Combined Software / Hardware Debug View

• Ericsson RBS 6000 Basestation
• Ericsson Helios Virtual Platform

– Enables software developers to
immediately begin SW development

– High performance abstract TLM
models available months before RTL

Ericsson use of Cadence Virtual System Platform
CadenceLIVE & DVCon

Intel Mobileye – Early SW development

Commitment to Software-Driven Verification

• Enable early SW development and validation
• Based on SystemC models or CPU fast models
• When only some key IP(s) ready

• Native software debug and configuration
across engines and abstractions

• Assembly and configuration for virtual and hybrid
• Native SW debug across abstractions and run time

engines

• Open platforms and models
• Virtual Models based on standard SystemC TLM2
• Run time / control framework natively integrated with

a heterogenous model ecosystem

• Tightly integrated with Cadence platforms –
Palladium, Protium and Xcelium.

• Fastest software execution across engines

Accelerate Signoff with
JasperGold RTL Designer Apps

Need for Early Design Checking

• Effort and cost to fix a bug increases significantly further into the development
cycle

IP VerificationTestbench Development

RTL Refinement

Integration

RTL Design

Ef
fo

rt
 to

 fi
x

bu
g

Catch bugs as early as
possible

Time

RTL Signoff by Designers: Big Picture

• Typical RTL signoff includes
• Signoff the RTL against a comprehensive set of structural

lint/DFT/CDC/RDC checks
• All checks are ‘automatic’ and user provides RTL + constraints (for DFT

and CDC/RDC)

• For comprehensive signoff, augment with automatic functional checks
• High-value code reachability and functional checks
• Functional CDC/RDC checks

• JasperGold® platform uniquely positioned to give true integrated solution for

AUTOMATIC
STRUCTURAL CHECKS

AUTOMATIC
STRUCTURAL CHECKS

AUTOMATIC
FUNCTIONAL CHECKS

AUTOMATIC
FUNCTIONAL CHECKS

+

Auto-Formal Checks: FSM
Reachability/Deadlock Example

IDLE

HEADER

CHECKSUM

DATA

CHECKSUM

Once FSM enters
CHECKSUM and

enq_sop_id never goes
high, CHECKSUM will be

deadlocked

• Structural LINT cannot
catch such issues

• These issues are high
value to caught at RTL
stage and can be
automatically checked
using auto-formal checks

Domain-Crossing Verification –
Gaps in Conventional Flow

Linking CDC/RDC analysis with functional verification is the key

1. Correctness of analysis constraints
• User-specified constraints are considered

golden
• Reuse of constraints – a big source of bugs
• Are my constraints correct?

2. Validity of waivers
• Assumptions made about design functionality
• Reviewed based on waiver comments
• Are the underlying assumptions for my waivers

valid?

3. Metastability-aware verification
• How do I guarantee that my design is immune to

metastability effects?
• Is my functional verification environment

metastability aware?
• Generally modeled with randomized

synchronizer delay in simulation – Pessimistic
and incomplete

Validity of Waivers

D QR

CLK
D QR

CLK

CLK1

RST1 RST2

D2 Q2

RDC
violation

Reset Isolation StrategiesReset Domain Crossing

Missing verification linkage to validate waiver related assumptions

• RDC violation: Destination flop (Q2) may go metastable if source reset (RST1) is
asserted while destination reset (RST2) is de-asserted

• Considered safe if reset isolation logic is present
• Assumption: The RDC path (D2Q2) cannot be sensitized when reset isolation is

active
• Is this assumption valid?

JasperGold Superlint App

+

Comprehensive functional checks, violation debug, and
waiver handling based on best-in-class formal analysis

Naming

Coding style

Sim-synth
mismatch

DFT
observability

DFT controllability

LPDDR NAND
FLASH

Reachability

Livelock/
deadlock

Combo loop
analysis

Range overflow

Arithmetic
overflow

Bus contention

X assignment

JasperGold® Visualize™ Environment

Low-noise violation
and waiver handling

Best-in-class debug

Enabled by true
formal technology

Superlint Flow

Run

Rules Configuration
• Custom categories
• Selected checks
• Custom parameters

Design Configuration
• Clocks
• Reset
• Signal
 configuration

Violation / Progress Report

Debug
violation and

failing properties
Lint

Waivers

 RTL
+ Lib

Signoff Report

DFT

Revise RTL

What was achievedWhat is pending

Analysis
of run
results

Revise Waivers

Auto-Formal

Auto-Formal
violations come
up in the same
violation tree as

LINT/DFT

Waivers are persistent across RTL code/
file path and hierarchy changes, waivers
are highly portable as those are stored as
Tcl commands

Persistent Waivers

Add comment
to create waiver

Observability-Enabled Debug

Use ‘why’ to debug why
the signal gets the value

which leads to failure

Failure trace is
automatically extended by
one cycle to show where

the failure is observed

Analyze in the source
browser, can trace loads

and drivers

Leverage the JasperGold® platform
best-in-class Visualize™ debugging

features

• Debugging auto-formal violations show where the violation propagates
• Boundary signals are added to the debug window
• The propagation cycle is highlighted – hints the user to perform “why”

JasperGold CDC App - The Complete
Picture

+

The only CDC solution with industry-leading formal technology for
functional checks, asynchronous verification, and waiver handling

Low-noise
violation handling

Powerful auto-
waiver feature

Innovative debug
with Visualize™ and

Graph views

Metastability
Modeling and

Injection

Assertion generation
and export to simulation

Constraint
Validation

Wide range of synchronizers (NDFF,
Mux, FIFO, Handshake, User-defined…)

Clock/Reset
Tree

Automatic structural checks

Functional checks (Gray, FIFO…)

Enabled by true
formal technology

Metastability Injection
in Simulation

Convergence/
Glitch

True CDC/RDC Signoff Flow with JasperGold
CDC App

Waivers

Metastability-aware
proof of:
• User-written

assertions
• CDC protocol

checks
• Waiver conditions

• Metastability-aware
simulation

• CDC protocol
checks

• Signal config
checks

• Waiver conditions

CDC Configuration and Structural Analysis

Garbage In = Garbage Out

Signal configuration correctness and waiver-related functional assumptions should be
verified

Wrong Waivers = Masking Issue

• CDC configuration
• Specify clock properties and relationships (using SDC or native commands)
• Specify correct reset types (async/synchronized/synchronous) and reset priority
• Declare signal configurations (constant/static/mutex/gray-code) with conditions

• Comprehensive structural analysis
• Clock and reset tree checks
• CDC synchronization checks
• Convergence/glitch checks
• Reset, RDC checks
• Waivers added while dispositioning structural violations

Functional CDC Analysis

Verification of analysis constraint correctness leads to greater confidence!

Signal configuration validation
• Auto-generated assertions for verification
• Proven in formal verification environment

Verify pseudo nature of constraints
• Specify triggering event for signal to be constant/static
• Example:

• Data on CLK1 domain can change only when destination is in reset (RST2 is asserted)
• check_cdc –signal_config –add_static D2 –condition RST2

• Additional verification to ensure pseudo-static property

Export and run signal configuration checks in simulation

Functional CDC Analysis (cont)
• Waiver condition validation

• Validation of functional assumptions used in dispositioning structural
violations

• Auto-waiver flow
• Tool automatically detect conditions for dispositioning structural violations
• Violations are waived if the condition is proven
• Example: Gray encoded buses, unsynchronized paths but are metastability

safe

• Conditional waiver flow
• User provides SVA expression for waiver condition
• User-selected violations are waived only if the condition is proven
• Export waiver conditions to simulation
% check_cdc -waiver -add -filter
 -comment "stable Q2 during RST1"
 -expression {##1 $fell(RST1) && $stable(RST2) |-> $stable(Q2)}

% check_cdc -waiver -prove

Verification reduces noise and avoids errors in manual dispositioning of violations

Metastability Injection (MSI) Flow in Formal

• Pre-requisite: Formal Property Verification (FPV) environment
• Passing functional assertions

• Push button flow with customized debug in visualize
• Inject metastability in user properties
• Verify user-defined properties in presence of metastability

• Metastability awareness in protocol checks

MSI Flow in Simulation

• Pre-requisite: Simulation environment with passing test cases
• Simple, easy to use, no instantiation flow in simulation

• Timing violation monitors and injection modules exported from
JasperGold® platform

• Injection models can mimic both setup and hold violations
• Not dependent on synchronizer types – all CDC crossings covered
• Configurable setup, hold time windows for individual clocks

• Random/Always/No Injection modes

Conclusion
• JasperGold® Superlint App is industry-leading solution for RTL signoff by

designers
Comprehensive structural LINT and DFT checks
High-value auto-formal checks
Easy setup and feature-rich analysis and debug environment
Designed to be low-noise, high-productivity application

• JasperGold® CDC App is a holistic CDC/RDC verification solution
Comprehensive structural checks
Functional CDC/RDC verification

• Constraint validation
• Waiver validation
• CDC protocol verification

Metastability-aware verification

Speed Up Verification with A Common
Methodology For Emulation And

Prototypinglist the Authors and affiliations here

System & Chip design trend 2021 - 2025

 Time-to-market
Development cost reduction
Multi-core design and verification complexity
 Integration of new designs and derivatives
Software stack development
Hardware-software convergence
More than 80% re-use
More than 60% of effort in software

LPDDRDRAM NAND
FLASH
NAND
FLASH

Cellular
Modem

WiFi LLI

DigRF

LP
D

D
R

 2

eM
M

C
 4

.5
U

FS

LP
D

D
R

 3

SD
 3

.0
SD

 4
.0

U
FS

SLIMbus

DSI

CSI2
CSI3

Bluetooth

SDIO

FM
Receiver

GPS
Receiver

R
FF

E

SL
IM

bu
s

Motion
Sensors cJTAG

GBT

SP
M

I

Power
Control

Multimedia
Processor

I2C

U
SB

 2
.0

Memory
Card

HDMI 1.4

Touch Screen
Controller

Display
Driver

Audio
Interface

Camera
Interface

USB 3.0 OTG

OCP 2.0
OCP 3.0

System on Printed Circuit Board (PCB)

Application Specific Components

SoC Interconnect Fabric

 CPU Subsystem

3D
GFX

DSP
A/V

High speed, wired interface peripherals

D
D
R
3
P
H
Y

Other peripherals

S
A
T
A
M
IP
I

H
D
M
I

W
L
A
N
L
T
E

Low-speed
peripheral
subsystemLow speed peripherals

P
M
U
M
I
P
I

J
T
A
G

I
N
T
C
I
2
CSP
I

T
i

m
e
r

G
P
I
ODis

play

U
A
R
T

Apps
Accel

Modem

Cortex
-A15

L2 cache

US
B3.
0

3.
0
P
H
Y

2.
0
P
H
Y

PCI
e

Gen
2,3

PH
Y

E
t
h
e
r
n
e
t
P
H
Y

Cortex
-A15

Cortex
-A7

L2 cache

Cortex
A-A7

Cache Coherent Fabric

System on Chip (SOC)

Software

Ba
re

 M
et

al
 S

of
tw

ar
e

D
SP

 S
of

tw
ar

e

Ba
re

 M
et

al
 S

of
w

ta
re

RTOS

Drivers

Communications L2

Communications L1

Firmware / HAL

Communications L3

Modem
Comms

Application
Processor

Bare Metal

Operating Systems (OS)

Drivers

Applications

Middleware

Firmware / HAL

Emulation & prototyping accelerate time to product
(revenue)

• Early, embedded software & firmware development
• Initial systems and/or proof of concept
• Pre-silicon chip (ASIC) verification

Source: Amlogic

Software is ready when 1st silicon comes in
• Full Android boot 30 min after silicon is back
• Full system demo to customer in 3 days

The Right Tool, for the Right Job, at the
Right Time!

Pre-Silicon Post-Silicon

 U
sa

g
e

Tape
Out 1st Silicon

Product
Release

Chip/System
RTL Ready

RTL
verification

Firmware & software
validation

HW regressions

• Predictable fast build
• Comprehensive debug
• Multi-chip level

capacity

• Highest performance
• Lowest cost
• Scalable capacity

Performance
Analysis

Power Analysis

Early HW/SW
Co-verification

Simulation
Acceleration

Palladium Z1 to Protium X1 benefits

• Unified Flow
o Reuse of the existing Palladium

environment

(clocks, memory models, scripts, AVIPs,

SB/EDK, etc.)

o Congruency between emulation and

prototyping

o Going back to emulation for detailed

debug

Compile

RTL

Palladium
Emulation

Protium
FPGA Prototyping

Palladium Z1 Emulation Drivers

Palladium® Z1
Versatility

22 Use Models

Virtualization
 Hybrids with virtual platforms
 Virtual verification machine
 Embedded testbenches
 Quick-cycle remote access
 Emulation Development Kits

Acceleration
 Simulation acceleration
 Code and functional coverage merge
 In-circuit acceleration
 Gate-level acceleration
 DFT acceleration
 Accelerated Verification IP

In-Circuit Emulation
 ICE with SpeedBridge® adapters
 ICE with synthesizable TB
 Multiuser regressions
 Emulation Development Kit

Hardware/Software
 Peripheral software bring-up
 Hardware and software coverage
 Software debug
 Firmware optimization/validation
 Scenario verification with Perspec

 Use Models
 Enabling Capabilities

Architecture
 Performance validation / optimization

Low Power
 Dynamic power analysis with Joules™

 IEEE 1801 / UPF / CPF verification

Post-Silicon
 ATPG/BIST vector validation
 Post-silicon validation

© 2021 Cadence Design Systems, Inc. Cadence confidential.

Multi-Use-Model VersatilityMulti-Project Use – Emulation Farms

TBA

TBA

TBA

TBA

TBA

TBA

TBA
Virtualization

AccelerationCore Emulation

Hardware/Software

Architecture

Low Power

Post-Silicon

4 to 576MG
User capacity

Up to 4MHz
Max perf.

1152 GBytes
User memory

Up to 56 Gbps
Infiniband, per port

1152
GBytes

Debug memory

Up to 140MG
per hour

Netlist compile

Palladium Z1
GXL Model S18L• Scalable datacenter-class emulation system

o IP to full SoC emulation: 4 to 576 million per rack
o Scales up to 9.2BG with up to 2,304 parallel jobs
o Rack-based form factor: setup in existing data center
o Built-in redundancy for reliability

• Virtualization
o Virtual target relocation
o Advanced job reshaping
o Emulation Development Kits (EDK)
o Virtual Emulation and Virtual Debug

Palladium Z1 key characteristics

13,824 IOs
(4608 per cluster)

Palladium Use Modes
Simulation Acceleration, Virtual and In-Circuit Emulation

Virtual Emulation

In-Circuit Emulation

Palladium In-Circuit Emulation (ICE)
SW-driven HW verification

Interface-driven HW verification
HW/SW co-verification

Test Environment

Application /
Tester

Ph
ys

ic
al

In
te

rfa
ce

s Physical
Devices

Embedded
Device
Models

Simulation Acceleration
TB-driven HW verification

Vi
rtu

al
In

te
rfa

ce
s

Test Environment

Application /
Tester

Virtual Device
Models

Test Environment

Simulator

Test-Bench
UVM-A, C/C++

Coverage

Assertions

FullVision

Debug

Multi-run

Modes

Fast

Compile

Low-power

DPA

Virtual Emulation
SW-driven HW verification

Interface-driven HW verification
HW/SW co-verification

Faster Compiles Resulting in Higher Productivity

IXCOM standard compile VXE 19.10

IXCOM Parallel Partition Compiler VXE 19.10

IXCOM Modular Compiler, VXE21.02

Compile time 5:42:08

Compile time 8:19:31

Compile time 19:47:25

57%
faster

compile

71%
faster

compile

Fclk
786KHz

Fclk
541KHz

Fclk
424KHz

• Main workstation: PD02, 96-core, 2TByte
• PPC workstation: PD03, 72-core, 3 TByte
 Running 18 partitions on PPC workstation

• Workstation: PD02, 96-core, 2TByte
• MC workstations: Machine farm through

LSF, 1TByte

• Workstation: PD02, 96-core, 2TByte

• Z1 configuration: 8-
clusters

Build

Alloc
ate

Run

Deb
ug

Palladium Debug
Unparalleled levels of productivity and at speed

Control Visibility
Determine when to
• Capture signals
• Stop emulator
• Log messages

Determine what
• Signals to capture
• Debug technology

to apply

Combine control & visibility
• Triggering waveform capture
• Full Vision & Waveform streaming
• Compiled Monitors with dynamic

technologies (DRTL and SDL)

FullVision View any design signal at full speed. Debug design

Dynamic Probe Capture select signals with large traces (up to 80M samples).

InfiniTrace Capture extremely long trace depth for post-analysis replay, move
forward & backward to debug any time window of interest

SDL/DRTL Specify multi-level complex trigger conditions. Use design events to detect
scenarios,

Offline Debug Offline concurrent debugging on workstation. Free up Palladium
resource for other jobs, jump to any time window using a specific trigger

Save/Restore Re-start emulation run from a previous state. Save time by
restoring, avoid repetitive initializations or sequences

Hot-swap Swap state of design back to simulator for interactive debugging to free up
Palladium resources for non-interactive jobs

Force Change design function during runtime. Set system conditions to analyze design
behavior under un-modeled corner cases

Waveform streaming Continuously view small number of signals at full
rate

Block
Toggle

• Palladium supports assertions, code and functional coverage
– Scored in hardware & viewed in software
– Supports acceleration & in-circuit emulation

Palladium coverage support

Assertion

Functional
Coverage

Code
Coverage

time

% coverage

Accelerate performance-
challenged simulations with
assertion, code or functional
coverage requirements

By applying coverage in Palladium
By applying coverage in simulation

Visualize coverage in
Xcelium Metric Center (IMC) or vManager

Detect gaps earlier and
improve overall verification
efficiency

Protium X1 Enterprise Prototyping System

• Performance
• Enabling early firmware and software development, automated bring-up
• Up to 50MHz for single FPGA; up to 5MHz on billion gate designs

• Capacity
• Advanced blade architecture scales to billions of gates
• Ideal for AI, ML, 5G, mobile, and graphics applications

• Fast Bring-up
• Unified Palladium® Z1 / Protium™ X1 compile ensures DUT congruency
• Enables transition from emulation to prototyping in days

• Multi-user
• Single-FPGA granularity assures high utilization and efficiency
• Ideal for storage, automotive, image, consumer and medical applications

Technology Details – Faster Prototype
Bring-up

Protium
Others

• Unified compile
• With Palladium® Z1, Protium™ S1
• Bring-up in days or weeks (vs. months)
• Re-use of existing environments
• Easy transition from emulation to prototyping

• Enhanced memory modeling
• Map virtually any design memory
• New: LPDDR5, UFS 3.0 and HBM
• Future protocols can be added quickly

• SpeedBridge® Adapters
• Connect to peripherals quickly
• Without manual rate-adaption

Technology Details – Advanced Debug
Capabilities
• Hardware debug: bring-up design quickly, validate functionality

• Force and release: for initialization and “what-if” analysis

• Data capture card (DCC): 1000’s of signals, millions of cycles

• Prototyping Full Visibility: observe any signal at any time

Software Debug: C Code

Hardware Debug: RTL

• Software debug: early firmware and software development
• Memory (backdoor) upload and download

• Clock control to stop and resume the hardware at any time

• Standard interfaces to industry-leading debuggers and software
environments - use familiar tools

• Joint Test Action Group (JTAG) and Universal Asynchronous
Receiver/Transmitter (UART) interfaces

• Transaction interface
• Directly connect to software models and virtual environments

Technology Details – Multi-user Functionality

• Prototyping of smaller IP or subsystems
• Flexible multi-user capability for up to 6 concurrent

users per blade
• Any single-FPGA granularity combination is possible – no restrictions
• “Cloning” of design is supported (same design in multiple FPGAs)

without recompile

• Enables optimal utilization for IP, IoT, storage, automotive,
image, consumer and medical designs

Shared solutions and peripherals
• EDKs and SpeedBridge Adapters

o Physical connection to real-world
interfaces

• Virtual Solutions
o VirtualBridge, AVIP, Hybrid, Virtual

Debug
o InfiniBand-based link to virtual interfaces

• Memory Model Portfolio (MMP)
o For all on-chip and off-chip memories

• Job Scheduler and vManager
o Manages workloads across Z1/X1

platforms
• Palladium only

o Dynamic Power Analysis with Joules
o Code and functional coverage

• Protium only: native interfaces
o Highest throughput
o “breaks” congruency

EDK & SpeedBridge Adapters

PCIe 4.0, USB 3.0 Device SB

HD Ethernet SB

MIPI Video SB

Workstation

miniSAS

IPass

Native Interfaces

InfiniBan
d

Virtual Interfaces

DPA with Joules
Code & functional

coverage

Memory Model Portfolio (MMP)

VirtualBridge, Virtual Debug, etc.

A Common Methodology Makes Life Easier
• Unified Flow

o Reuse of the existing Palladium environment
(clocks, memory models, scripts, AVIPs, SB/EDK, etc.)

o Congruency between emulation and prototyping
o Going back to emulation for detailed debug

‣ Common Compile Front-end
‑No learning of new tools and flows
‑Identical language coverage
‑New capabilities and fixes available on

both platform simultaneously

Accelerate SoC Performance Testing
with System VIP

Why Is SoC Performance Testing a Growing Challenge?
Number and variety of processing engines is

growing to address More than Moore

SoC Infrastructure has become a mass of coherent and non-
coherent interconnects stitched together with clock and

domain bridges to support multiple power domains.

To maintain growing demands for SoC performance the
number of cache hierarchies is growing with each

generation. Combined with high-speed coherent I/O creating
complex scenarios and measuring results is tough

To keep pace with system throughput demands, DDR
subsystems are becoming more complex, multiple

controllers allied to complex hashing in the controllers and
interconnects to ensure balanced DDR loading

Understanding Performance Throttling

Ready

Address

Write DataDa
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Issuing
Capability

Read Data

Latency

Response
Da

ta
Ad

dr
es

s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Acceptance
Capability

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Da
ta

Ad
dr

es
s

Outstanding
Transactions

If the situation persists it can cause
back-pressure to build all the way back

to one or more Initiators

Once a Responder cannot keep up with
demand, it creates “back-pressure”

Quality of Service (QoS) settings can
adjust priorities when the system

becomes more highly loaded.

Simulation

A Systematic Approach to Ensuring SoC Performance

Infrastructure & DDR

On Chip Bus

Interface

VIP
Interface

VIP or Memory
Model

Interface

C

ActionActionAction
ActionActionAction

Use-cases

IP Verification

Step 2 – Synthetic Workloads
• Traffic Generators for non-coherent scenarios
• Basic Coherency Tests – cache hit rate sweeps
• Advanced Coherency Tests – complex multi master

scenarios

Step 1 – Characterization
• Path-by-path maxBandwidth, minLatency analysis
• Sweep Outstanding Transactions to find sweet spot

Step 3 – Sign-off
• Define sign-off performance scenarios
• Create sign-off checks

• Self-checking scenarios
• Post-processing performance checks

Simulation or Acceleration

Subsystem Verification

AccelerationSimulation

A Systematic Approach to Ensuring SoC
Performance

Infrastructure & DDR

On Chip Bus

Interface

VIP
Interface

VIP or Memory
Model

Interface

C

ActionActionAction
ActionActionAction

Use-cases

IP Verification

Subsystem
OCB

Interface

A/VIP
Interface

Memory Model
Interface

C

ActionActionAction
ActionActionAction

Use-cases

Interface

A/VIP
Interface

ActionActionAction

SoC Verification

SoC
Processo

r

Interface

Memory Model
Interface

C

ActionActionAction
ActionActionAction

Use-cases

Interface

AVIP
Interface

ActionActionAction

Reuse Test Content at Subsystem and SoC

How Does System VIP Help?

Cadence®

System VIP
Testbench
Assembly

SoC Test
libraries

SoC
Performance

analysis

Data / Cache
coherency
checkers

System Performance
Analyzer

System Verification
Scoreboard

Analysis and Checking Generation and
Stimulus

System
Testbench
Generator

System Traffic
Libraries

What Does an Automated SoC Performance Flow
Look Like?
Flow

2. Scenario Creation
• Initialization of DUT
• Basic ATP Test
• Basic Coherency Tests
• Advanced Coherency Tests

1. Generate Testbench
• Configure CSV for Simulation
• Generate SV UVM or C

testbench

3. Run Tests
• Simulation or Acceleration

4. Analyze and Debug
• SPA Performance Analysis
• SVD Correlation

csv data

VIP

VIP

VIP VIP VIP VIP

VIP VIP

System
Testbench
Generator

Perspec™ Portable Performance Scenarios

Traffic Libraries

What Does an Automated SoC Performance Flow Look Like?
Scenario creation

Drag and drop ”Actions” from the gallery which
shows libraries and user code :-

Increment Bandwidth from 100MBs to 400MBs

Fields can have fixed values or in this case in a
repeat loop to create 4 sequential ATP Actions

ATP FIFO Configuration models bursty IP
behaviour

400MBs is the max possible on this interface,
therefore there is some minor throttling going on

FIFO creates the initial ”burst” of transactions
which has a bigger effect at lower bandwidths

Fields with a “?” indicate that the Solver will
generate a random value unless the user overrides

with a contrained value.

What Does an Automated SoC Performance Flow Look Like?
DDR analysis

The DDR analysis tools help
identify potential areas of

concern for DDR performance

What Does an Automated SoC Performance Flow Look Like?
Debug – Root causing problematic transactions

Cadence System VIP
Automate and speed up SoC level verification with pre-define content and tools

System Testbench
Generator

• UVM SV testbench for simulation
• C testbench for emulation

System Performance
Analyzer

• Memory, interconnect, and peripherals
• Unified for simulation and emulation

System Verification
Scoreboard

• Checks data and cache coherency
• Supports simulation and emulation

• Cache coherency, performance, PCIe®
• Seamlessly in sim, emulation, and silicon

System Traffic
Libraries

Cadence®

System-Level Verification IP
Chip-level test and testbench generation with advanced analytics

Renesas has used Cadence VIP for many years and values
Cadence’s leadership in advanced SoC verification technologies.
By adding the new System VIP to our existing verification
environment based on the Cadence Xcelium and Palladium
platforms, and improving stimulus re-use and automation, we’ve
further accelerated the SoC verification process with 10X more
efficiency, enabling us to deliver innovative, high-quality
products to our customers faster.

Tetsuya Asano
Director, Design Methodology Department, Shared R&D EDA Division at
Renesas Electronics Corporation

Through our collaboration with Cadence, we’ve reduced some
of the complex SoC verification challenges, especially around
I/O peripherals. By using Cadence System Traffic Libraries and
System Performance Analyzers, Arm was able to automate
complex test generation processes, enabling a quicker PCIe
integration verification and performance analysis.

Tran Nguyen
Director of Design Services at Arm

• Ensuring SoC performance targets are met is a growing challenge
• Bigger testbenches, multiple runtime engines
• Building richer scenarios
• Harder to analyze and debug

• Testbench automation is essential to be productive
• Building all the required scenarios is becoming a large task

• Reuse of the scenario content is essential
• Easy porting of content to different SoCs and execution engines is a must

• Analyzing and debugging performance requires domain-specific tools
• On-chip bus, DDR, and other domains need special analytics
• Tracing the transaction lifecycle across an SoC is extremely challenging without tools

Summary

Smartest
Apps

Fastest
Engines

Smart Verification Management
vManager™ – Indago™ – VIP – System VIP – Perspec™

X86 or Arm® CPU Custom Processor FPGAMost Choice
of Compute

Find and fix the most bugs per $ compute per day

X86 or Arm CPU

Cadence Verification Solution

Formal
JasperGold ™

Simulation
Xcelium™

Emulation
Palladium™

Prototyping
Protium®

© 2021 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at www.cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All other trademarks are the property of their respective owners.

