

应用PSS进行智能化验证

David Hwang and Sera Gao from X-Epic

芯华章公司介绍

芯华章聚集全球EDA行业精英和尖端科技领域人才,致力于面向未来的新一代EDA软件和智能化电子设计平台的研发,产品将全面覆盖数字芯片验证需求,包括:硬件仿真系统、FPGA原型验证系统、智能验证、形式验证以及逻辑仿真,全面助力集成电路、5G、人工智能、云服务、汽车电子和超级计算等多领域的发展,为合作伙伴提供自主研发、安全可靠的芯片产业解决方案与专家级顾问服务。

芯华章验证产品将覆盖

硬件 仿真系统

Hardware Emulation System FPGA 原型验证

FPGA-based Prototyping

形式验证

Formal Verification

智能验证

Intelligent Verification 逻辑仿真

Logic Simulation

跨平台激励应用在芯片验证不同阶段

IP level

利用atomic seq 构造各种IP级别 测试场景

SubSystem

复用IP级的测试 用例,快速构建 相对复杂的测试 场景

SoC level

场景的有效随机 率和覆盖率比传 统验证方式大大 提升

Post-Silicon

在系统芯片上测 试真实的随机场 景,分析芯片的 性能和功耗

验证遇到的严峻的挑战

验证所有的访存路径

- 1. GPS CPU CAM DMA -- DMC
- 2. PAD CPU WIFI DMA DMC
- 3. NFC FMC CPU PAD DMA DMC
- 4.

```
component soc_top {
  dma_c dma;
  ip_c ip_util;
  pool dbuf dbuf_p;
  bind dbuf_p *;
  action dramtest_a {
    activity {
     do dma_c::dram_xfer;
    }
  }
}
```


跨平台激励技术关键点

提取设计的慧图

归路描述扬声

初景组合

形 混 description

场景自动生态

多目标平台运行

- ▶PSS对测试场景具有高效建模和表达方式
- ▶能够快速有效地提高系统级测试覆盖率
- ▶用单一语言产生多目标平台的测试场景

跨平台激励工具的使用流程

Same stimulus, different cases format for different platform!

C和SV测试用例中的数据结构


```
bit [31:0] addr[16],
bit [31:0] data[16],
bit rd_or_wr,
int burst_type,
int hsize,
int length
```

DPI & tasks

Transaction in UVM TB

ahb_master_transaction

```
action 4_master_ahb {
   master m1, m2, m3, m4;
   constraint {
      (m1.mID==1);
      m1.read_weight ==100%;
      m2.write_weight == 50%;
      .....
}
```

```
struct burst_packet {
   rand bit in [0..65535] start_addr;
   rand operation_type oper_t;
   rand burst_type burst_t;
   rand transfer_size transfer_s;
   rand bit in [0..65535] length;
```

Transaction in PSS

```
action master {
.....
Activity {
    select{ [$read_weight]: do read.with( constrain);}
    }
}
action write {.....}
action read {.....}
```

One action as one time of write /read operation, Very flexible combination between actions, cross layer, cross type

DSL语言 - 高级场景建模

Key definition for descripting a verification scenario

- Collection (list, map, set, etc.)
- Operator expression
- Component action
- Activity control-flow construct
- Flow objects
- Resource object
- Algebraic constraint
- Coverage Spec construct
- Target template implementation
- Conditional code processing

Portable Test and Stimulus Standard Version 1.0a

February 2019

Copyright © 2017 - 2019 Accellera. All rights reserved

传统验证迭代回归 - 如何打破?

When Automotive FuSa Met IC

Jimmy Sun Technical Director from X-EPIC

Automotive Semiconductor

Question: How to switch my current IC to automotive version?

Answer: No. it is not reasonable.

Question: What should we do if we want to plan a automotive IC/IP?

Answer: at least, you should consider functional safety, reliability, Cyber Security and traceability.

What is Functional Safety? What is Functional Safety in semiconductor?

- Functional Safety in ISO 26262-1(Vocabulary)
 - Absence of unreasonable risk due to hazards caused by malfunctioning behaviour of E/E systems.
- Functional Safety in semiconductor
 - To avoid, detect and control systematic failure;
 - Perfect manufactory, reduce DPPM;
 - Detect and control random hardware failure;
- Safety Analysis Method
 - FTA
 - FMEA/FMEDA
 - DFA

In today's presentation, we will use FTA as an example to explain how to do Safety Analyses with FTA method in Semiconductor.

Fault Tree Analysis

- FTA is a top-down analysis method;
- FTA starts from top level failure mode to detect the root reason of failure;
- FTA is descripted by using symbols;

Symbol	Description
	Event
&	And Gate, Probabilities should be P = P1 * P2
2	Or Gate, Probabilities should be P = P1 + P2 − (P1*P2) ≈ P1 + P2
	Top or middle Event that should be analyzed

$$P = \sum P_i$$

Residual Failure Rate:

$$\lambda_{RF} = \sum \lambda_{i}$$

FTA Example for Semiconductor

PMHF = 1.00009 FIT

Latent Fault:

1. SM failed;

Assumptions:

SM: 1 FIT

DC: 90%

10000h

Logic0: 10 FIT

Runtime hours:

Then Logic0 failed and SM can't detect it;

90%

DESIGN AND VERIFICATION CHIN Dangerous Faults SHANGHAI | MAY 2 absorved by SM Memory Data $9e^{-10} = 0.00009$ DaFITerous multi point faut Dangerous MPF & FIT Dangerous F_{EIT}s Latent in Logic0 that Fault in should be SM bearyod by SM SM ∞ Dangerous 1 FIT Detected

accellera

in Logic0 that

should be

Logic

1 FIT

Diagnostic Coverage from

SM

DC

DC =

90%

2021
DESIGN AND VERIFICATION FTA Example for Semiconductor ONFERENCE AND EXHIBITION IN TOUR PROPERTY OF THE PROPERTY OF T What we can do if PMHF PMHF = 1.00009 FHTin Logic0 that didn't met target? HANGHAI | MAY Solution: Violation of SR should be for Memory observed by SM For Logc0 should Data Memory Data reduce FIT number; Logic For DC: $9e^{-10} = 0.00009$ 1 FIT 1 FIT Dangerous multi Improve SM to get Residual Fault point faut high number DC; Diagnostic Run fault injection to Coverage from Residual Dangerous prove current SM has SM MPF & & better DC: 1 FIT 10 FIT 10% Dangerous Fauts DC Latent in Logic0 that Fault in Dangerou Diagnosti should be DC = SM c from SM s Fault shearyad by SM 90% Logic SM 8 1-DC Dangerous 10 FIT DC = 1 FIT Detected 90%