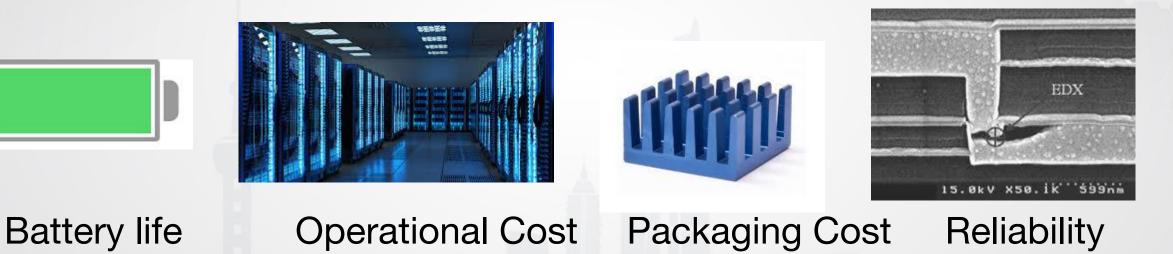


The New Power Perspective -Realistic Workloads - Real Results

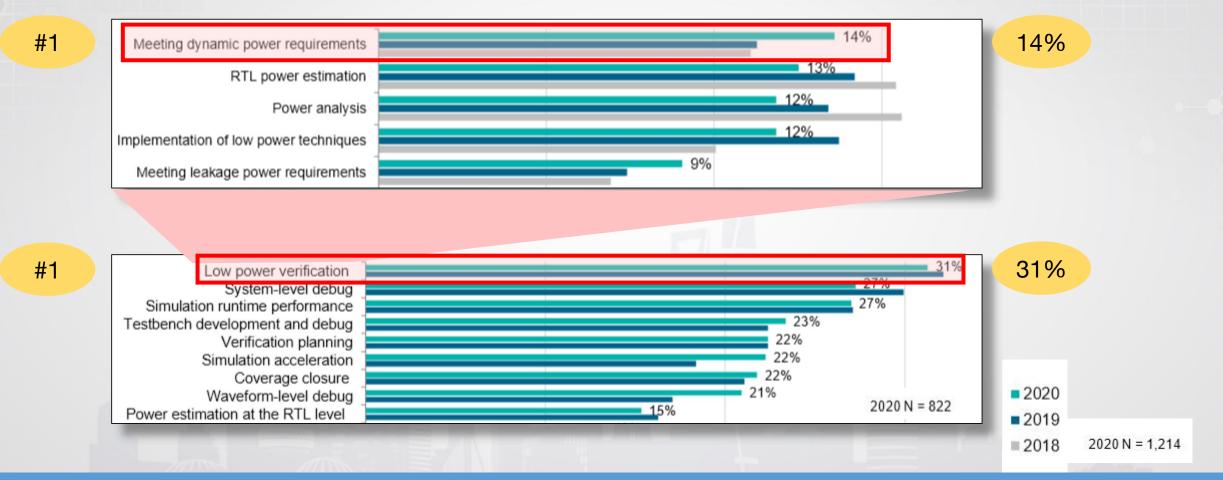
Xiaoming Li, Synopsys

Agenda



- Why Power Matters
- Power Verification using Emulation
- Results

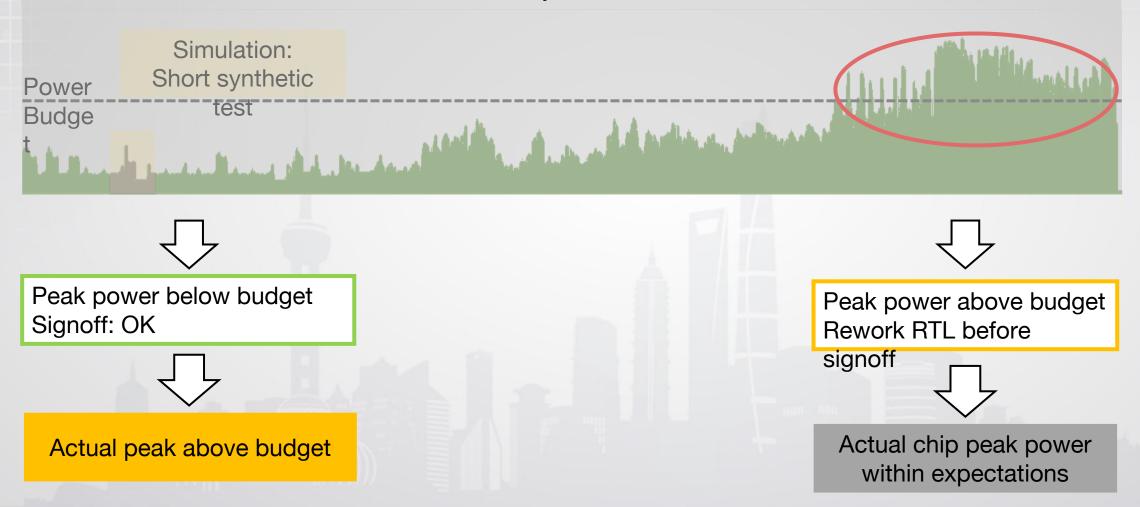
Power Consumption Drives Competitiveness



Peak and Average Power are Key Design Concerns

Low Power Remains #1 Verification Issue Synopsys Global User Survey 2020

Meeting Dynamic Power Requirements Becoming More Difficult


and the second

Peak Power Events Are Critical

Peak power events are driven by actual software workloads^{26,202}

Emulation: Billion cycle software-driven test

Running SW Workloads to Find Power Bugs

Small tests do not expose realistic workload driven power bugs

Real firmware and OS are needed during pre-silicon testing Must use emulation and verify power over millions or billions of cycles Pre-silicon power verification enables debug not possible with actual silicon How is Power Calculated? Power Analysis Requires Waveforms, Technology Library Library and Signal Delay Data

Total Power =

Logic Cell Power

Switching Power: Capacity, Frequency, Voltage

+ Internal Power

+ Leakage Power

- + Clock Tree Power
- + Memory Power

Average Power

- Need # toggles, total duration at 0 and 1
- Cycle Power
 - 0-delay waveform for all signals for million cycles

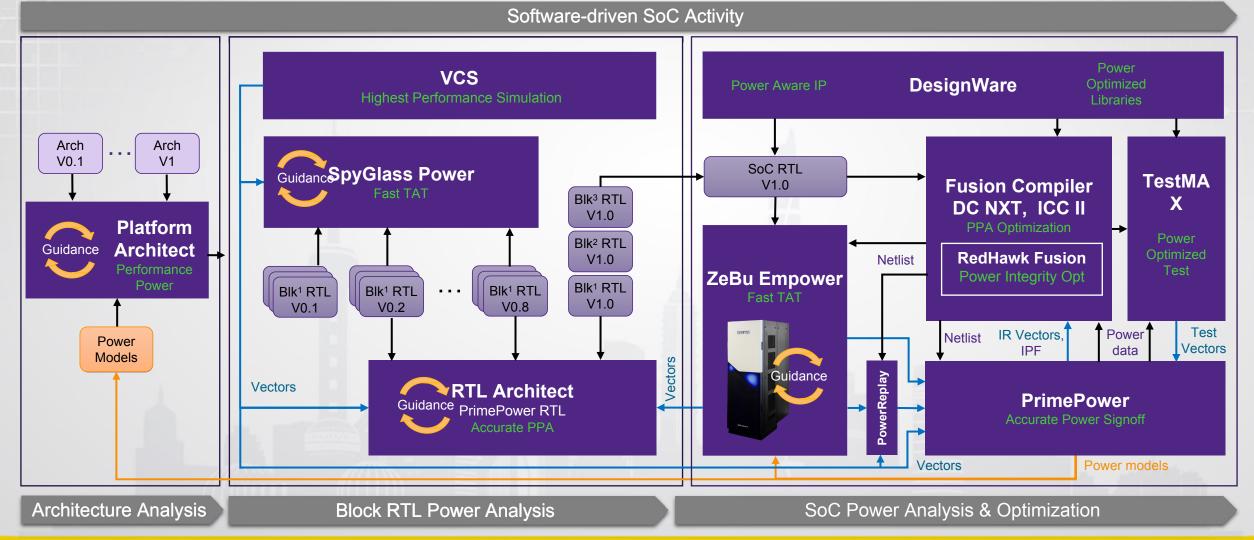
Signoff Power

 Waveform for all signals with accurate delays

Data Formats

• SAIF: Switching Activity File

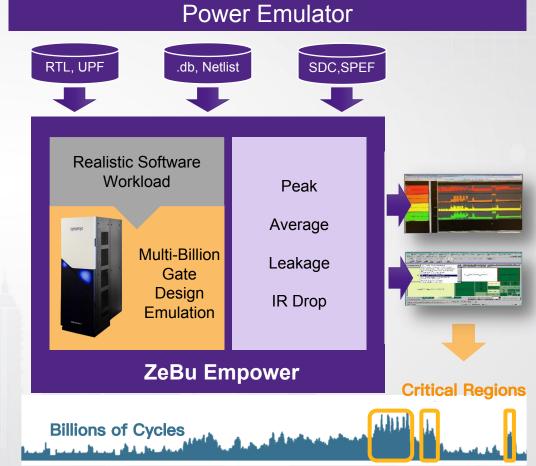
accel


SYSTEMS INITIATIVE

- .lib: Technology Library for Logic and Memory Internal and Leakage Power
- SPEF: Net Capacities File
- SDF: Net Delay File

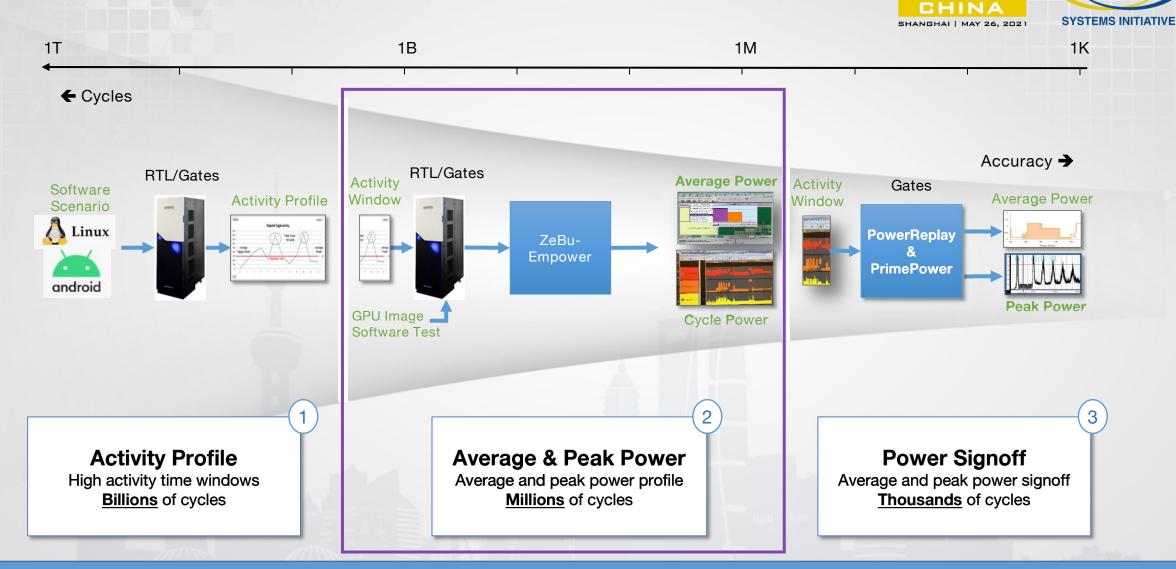
Synopsys Software-Driven Low Power Solution

End-to-End low power solution from architecture to signoff



ZeBu Empower Fastest Power Emulator for HW-SW Power Verification Market All May 26, 201 Key Benefits

Large designs, Realistic workloads, Multiple iterations per day

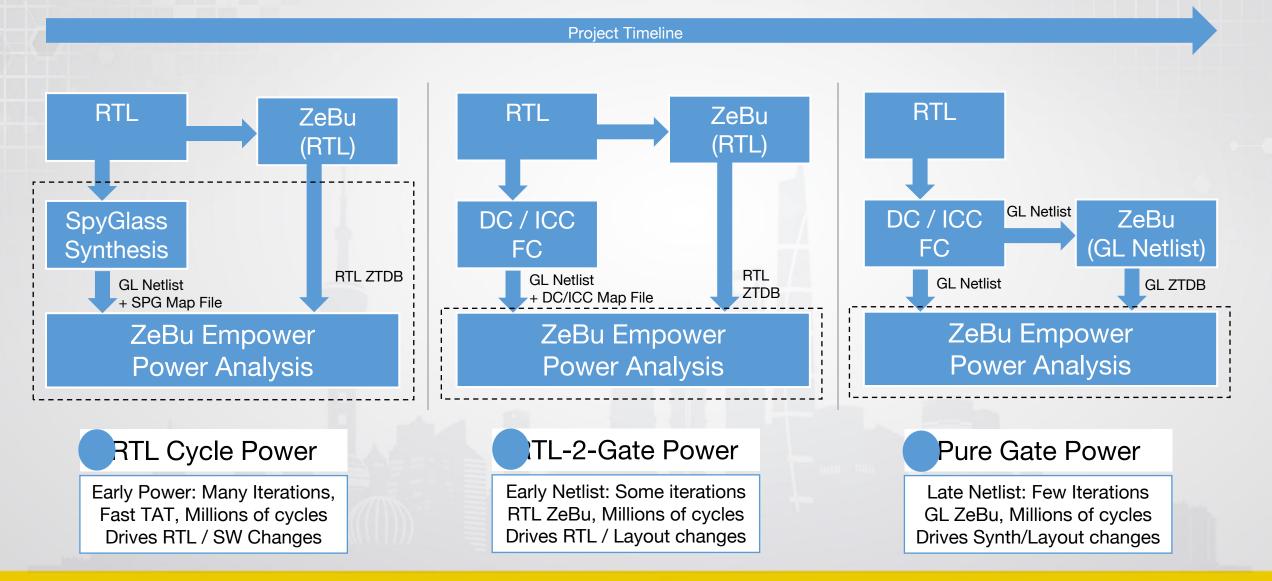

Actionable power profiling for dynamic and leakage power

Power critical blocks and vectors feeding into signoff analysis

Hardware and Software Architected for Maximum Compute Throughput

Software-Driven SoC Power Analysis

acceller


CONFERENCE AND EXHIBITION

Identify Peak Power with real stimulus: Zoom from billions cycles \rightarrow Thousands of cycles

ZeBu Empower Power Analysis: RTL Cycle, RTL-2-Gate, Gate

ZeBu Empower Power Estimation: **Tcl Shell & Average/Peak Power**

Flow Step	ZeBu Empower Command
Set all Required .dbs	<pre>set link_library "tech.db mem.db"</pre>
Read all Netlist Files	<pre>read_verilog design.v; link</pre>
Read Constraints	read_sdc
Read Parasitic Data	read_parasitics dut.spef
Read Activity File	read_stimulus -file dut.ztdb
Calculate Power	compute_power
Report Power	report_power

Power Group	Internal Power	Switching Power	Leakage Power	Total Power	(Peak %) Power	Peak Time
clock network	8.899e-04	0.000e+00	0.000e+00	8.899e-04	(48.18	%) 8.901e-04	71640
register	9.527e-06	3.696e-06	3.760e-04	3.892e-04	(21.07	%) 4.396e-04	77280
combinational	5.495e-05	4.844e-05	4.645e-04	5.679e-04	(30.75	%) 1.114e-03	11280
sequential	0.000e+00	0.000e+00	0.000e+00	0.000e+00	(0.00	%) 0.000e+00	N/A
memory	0.000e+00	0.000e+00	0.000e+00	0.000e+00	(0.00	%) 0.000e+00	N/A
io pad	0.000e+00	0.000e+00	0.000e+00	0.000e+00	(0.00	%) 0.000e+00	N/A
black_box	0.000e+00	0.000e+00	0.000e+00	0.000e+00	(0.00	%) 0.000e+00	N/A
Net Switching Powe	er = 5.21	4e-05 (2.	82%)				
Cell Internal Powe	er = 9.54	4e-04 (51.	67%)				
Cell Leakage Power	c = 8.40	5e-04 (45.	51%)				
Total Power	= 1.84	7e-03 (100.	00%)				
Peak Power	= 2.43	4e-03					
Peak Time		11280					

Standard Tcl Shell Commands Compatible with PrimePower

Tcl Debug Shell Debug design, Debug Power

#	groups:	/or1200	cpu

<pre># cols_per_group:</pre>	leakage internal	switching total	<<- columns
# xunit: 1ns			

f yunit: ι	WL
------------	----

WSH TABLE BEG

col names: xkey=Time G1.C1 G1.C2 G1.C3 G1.C4

100	8.304661e+02	3.958796e+02	6.054502e+00	1.232400e+03
110	8.302657e+02	9.023951e+02	2.466496e+01	1.757326e+03
120	8.300638e+02	9.084959e+02	3.577724e+01	1.774337e+03
130	8.304145e+02	8.917342e+02	6.054502e+00	1.728203e+03
140	8.301953e+02	9.040037e+02	2.506173e+01	1.759261e+03

Standard Tcl analysis shell, Average + Peak Power Reports

Read Parasitic Data / Net Annotation 2021

SHANGHAL MAY 26, 2021

wsh> report_parasitic_annotation

Info: Total 14,315 unique nets found, missing capacitance annotations 4(0.03%).
Info: Cap Unit: 0.001 pF, Data Source: SPEF(99.97%), WLM(0.03%)
Info: Wire cap stats: sum = 491.34, avg = 0.03, min = 0.54, max = 45.98
Info: Total cap stats: sum = 26008.90, avg = 1.82, min = 0.00, max = 1373.96
Info: SPEF Annotation Summary

Nets Driven by	Annotated (%)	Not Annotated Loadless (%)	Not Annotated Loaded (%)	Total
Primary Input	385(99.74%)	0 (0응)	1(0.26%)	 386
IO Pads	0(0응)	0 (0응)	0(0%)	0
Black Box	0 (0응)	0 (0응)	0(0%)	0
Memory	0 (0응)	0 (0응)	0(0%)	0
Register	2,943(99.97%)	0 (0응)	1(0.03%)	2,944
Latch	0 (0응)	0 (0응)	0(0%)	0
Other Sequential	0(0응)	0 (0응)	0(0%)	0
Clock Gate	0 (0응)	0 (0응)	0(0%)	0
Combinational	10,983(99.98%)	0(0응)	2(0.02%)	10,985
	14,311(99.97%)	0(0%)	4(0.03%)	14,315

All nets: primary Input, Register, Combinational ... Goal 0% Not Annotated - if not debug ...

Read Stimulus / Net Annotation

wsh> report activity annotation -list not annotated

Info: Processing -root /or1200_cpu, -stim_id /wsdb/stim1 ... Info: Activity Annotation: -root /or1200_cpu, -stim_id /wsdb/stim1 Info: Checking for drivers with missing waveform annotations. Info: Total 2,277 essential drivers found, missing waveforms 0(0%). BEG: Waveform Annotation Summary

Nets Driven by	From Activity File (%)	From Constants (%)	Not Annotated Loadless (%)	Not Annotated Loaded (%)	Total (%)
Primary Input	386(99.48%)	0 (0%)	2(0.52%)	0 (0%)	388(17.03%)
IO Pads	0(0응)	0 (0응)	0(0%)	0(0%)	0(0응)
Black Box	0(0%)	0 (0응)	0(0%)	0 (0응)	0(0응)
Memory	0(0%)	0(0%)	0(0%)	0(0%)	0(0응)
Register	1,891(100%)	0(0%)	0(0%)	0 (0응)	1,891(82.97%)
Latch	0(0%)	0 (0응)	0(0%)	0(0%)	0(0응)
Other Sequential	0(0%)	0(0%)	0(0%)	0 (0응)	0(0응)
Clock Gate	0(0%)	0(0%)	0(0%)	0(0%)	0(0응)
Combinational	0(0응)	0 (0응)	0(0%)	0(0%)	0(0응)
Empty Modules	0(0%)	0(0%)	0(0%)	0(0%)	0(0응)
	2,277(99.91%)	0(0%)	2(0.09%)	0(0%)	2,279(100%)

Essential Signals: Sequential Outputs, Memory Outputs, Port Inputs (not combos). Goal 0% Not Annotated - if not debug ...

Computer Power/ Cell Computed

Info: 7	Total cells: Total computed Power Computat		12,192 12,192(100%)		
J	Power Group	Power Computed (%)	Power Not Computed (%)	Total	
(clock network	0(0%)	0(0%)	0	
	register		0(0%)	1,891	
(combinational	10,301(100%)	0 (0응)	10,301	
ŝ	sequential	0(0응)	0 (0응)	0	
r	memory	0(0응)	0 (0응)	0	
	io_pad	0 (0응)	0 (0응)	0	
k	black_box	0(0%)	0(0%)	0	
		12,192(100%)	0(0%)	12,192	
-					

All cells: clock network, register, combinational, memory... Goal 0% Not Computed - if not debug ...

Local Customer Use Case

Bring-up

- Effort
 Flow is rather simple and clear
- PrimePower script can be easily reused
- Generally one day set-up period for new project

Speed

- Typical TAT is around ~2 hours for tens of millions gate counts design
- Typical TAT is around ~12 hours for hundreds of millions gate counts design
- Native PC farm support, more farm resource, less TAT
- Multi-iterations per day

It is the first time to perform complex power analysis with real software workload at presilicon stage for millions of cycles, including DFS, clock gating feature enabled.

Local Customer Use Case

Peak Time

N/A N/A

180459561.984 i 180459596.616 180459575.088 180459569.472 180459563.856

Attrs

Average power <2% deviation compared with PrimePower

PrimePow

	el register cloc led power grou	ck pin inte	ernal powe	r									
Power Group		Gwitching Power	Leakage Power	Total Power	(%	Attrs							
clock_network register combinational sequential	2,0498 3,709e-03 4 3,798e-03 9 0,0000	9.097e-03	0.0175 0.1036 0.2764 3.689e-04	0.1118 0.2893	(63,55%) (2,78%)		т			Ze	Bu Em	power	
memory io_pad black_box Net Switching Power		5.761e-08 0,0000 0,0000 (12.47%	0.1353 0.0000 0.0000		(26.46%) (0.00%)	9 10 11 12 13		ng register c fined power g		rnal power			
Cell Internal Power Cell Leakage Power	= 2,9861 = 0,5332	(74.27% (13.26%				14	wer Group	Internal Power	Switching Powe r	Leakage Power	Total Power	(%)	Peak Power
Total Power	= 4.0208	(100,00%)			18 re 19 co 20 se 21 me 22 io	_pad	2.027e+00 3.697e-03 3.810e-03 4.498e-06 9.264e-01 0.000e+00 0.000e+00	4.867e-01 4.472e-03 9.084e-03 2.558e-07 6.744e-08 0.000e+00 0.000e+00	1.758e-02 1.041e-01 2.764e-01 1.101e-05 1.353e-01 0.000e+00 0.000e+00	2.531e+00 1.122e-01 2.893e-01 1.577e-05 1.062c+00 0.000e+00 0.000e+00	(63.37%) (2.81%) (7.24%) (0.00%) (26.58%) (0.00%) (0.00%)	3.588e+00 1.250e-01 3.085e-01 2.044e-05 1.701e+00 0.000e+00 0.000e+00
						24 25 26	ack_box Net Switching Pow Cell Internal Pow Cell Leakage Powe	ver = 5.00 ver = 2.96	2e-01 (12. 1e+00 (74. 4e-01 (13.		0.0000+00	(0.00%)	0.0002+00

29 Total Power

3.994e+06 (100.00%)

Local Customer Use Case

Cycle power <5% deviation compared with PrimePower

	PP (W)	ZeBu Empower (W)	(ZeBu Empower - PP)/PP
	4.53	4.44	-0.01911766
	4.53	4.44	-0.019269536
	4.56	4.47	-0.019126535
	4.53	4.44	-0.01888543
ρ	4.56	4.50	-0.012141009
	4.57	4.49	-0.01855186
	4.56	4.49	-0.014354386
	4.55	4.46	-0.019007692
-0.005 -0.01	4.55	4.48	-0.014616044
F I I I I I	4.55	4.47	-0.018207253
ğ	4.56	4.47	-0.018641009
-0.01	4.54	4.45	-0.019657489
	4.53	4.44	-0.019637307
· PP) / 말 -0.015	4.53	4.45	-0.018675055
	4.53	4.45	-0.018703753
👻 IVA IVANA ITA INTA INA IWA INA IVAN INA INATA INATA INA IWA.	4.53	4.44	-0.020122737
	4.52	4.47	-0.010213938
	4.53	4.44	-0.02002362
	4.56	4.49	-0.014760965
	4.53	4.45	-0.018122958
-0.025	4.54	4.51	-0.007194053
	4.56	4.47	-0.019219737
	4.55	4.48	-0.015076264
	4.54	4.45	-0.019574449
	4.55	4.48	-0.014661758
	4.55	4.46	-0.019503077
	4.56	4.47	-0.019928289

ZeBu Empower - Multiple Turns per Day

3h TAT – Daily TAT not possible before Major US Processor Company GPU Design, 5M Cycles, 4.8MG, 8 CPUs 12h TAT – Not possible before China AI Startup Al Design, 1.5M Cycles, 300MG, 150 CPUs 1.1h TAT - Using only 14GB/CPU Major US Processor Company GPU Design, 2.6M Cycles, 5MG, 24 CPUs 2h TAT – Good QoR for Exploration Leading IP Provider GPU Design, 0.7M Cycles, 28MG, 8 CPUs

Thank You