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RISC-V Fundamentals
• “I” base integer instruction set
• “M” extension for integer 

multiplication/division
• “A” extension for atomic read-modify-

write memory accesses
• “F” extension for single-precision (32-

bit) floating point
• 32 registers (32-bit, 64-bit, 128-bit)
• 3 privilege levels
• 4096 CSRs
• Interrupts and exceptions

  

• Open-source ISA
• Support a wide variety of applications
• Many possible configurations
• Custom extensions – Domain Specific 

Architectures
• Number of members is increasing 

continuously
• Ecosystem maturing quickly – 

toolchain, simulators, verification, …
• Not-for-profit commercial-grade 

cores – OpenHW Group

Instruction Set Architecture

The Rise of RISC-V



RTL Verification Challenges
• It’s great …

• Systematic detection of corner-cases 
bugs

• The only technology that can provide 
exhaustive verification
• Proof of bug absence
• Simulation/emulation explore a fraction of 

the state space

• … but
• Requires expertise to write good quality 

assertions
• Difficult to assess quality of assertions, 

detect gaps
• Complexity issues—inconclusive proofs

  

• Checking compliance with ISA is a 
significant task …

• … ensuring functional correctness is 
a very complex task

• Pipelined implementation optimized 
for power, performance, area

• Many pipeline-based corner cases are 
impossible to foresee

• Corner-cases related to interrupts, 
exceptions, privileged modes

• Risk of security vulnerabilities and 
hardware Trojans 

Formal Verification

RTL Verification with Formal



  

RISC-V Verification Methodology
 

Inputs
Core’s RTL
RISC-V ISA (Spec)
Design implementation decisions (e.g., 
number of pipeline stages)

Outputs
Trusted executable spec
Proof that RTL is equivalent to executable 
spec



  

OneSpin’s Processor Integrity Solution
 

• Automatic extraction of 
design info

• Built-in, proven RISC-V 
ISA formalization in 
SVAs

• Optimized for 
exhaustive, unbounded 
proofs

• Proof that SVAs 
achieve 100% coverage 
– no gaps

• Integrated debug 
features



  

Operational Assertions and
Formalizing ISA

 

• SVAs use library of 
Operational Assertions

• Strict coding style to 
express the expected 
behaviour of each 
instruction • Capture effects of instruction and 

exceptions on the architectural 
state

• Decoupled from micro-
architectural details
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GapFreeVerification
 

• Systematic process to 
cover 100% of 
functionality

• Formal proof that no gaps 
are left

Outcome:
• Proof that ISA’s executable model 

(SVAs) and RTL are equivalent
– For any input trace the two 

models produce the same output 
trace

• Any undocumented or deliberately 
hidden function is detected

Operational SVA

RISC-V Core

=



  

Results – RI5CY (CV32E40P)
 

• 4 stages, 32-bit
• Core now curated by 

OpenHW Group
• Target is commercial-

grade quality
• Solution applied to bring 

core’s quality to the level 
of most advanced IP 
providers



  

Results – RI5CY (CV32E40P)
 

• github.com/openhwgroup/cv32e40p/issues
• #157: Exception Handling Violation - dcsr
• #159: Exception Raising Violation - Fetch/Store/Load Access
• #169: Exception Raising Violation - Illegal Instruction - dynamic rounding mode
• #170: Exception Raising Violation - Illegal Instruction - FS field
• #174: F extension - Dynamic Rounding Mode Violation
• #175: F extension - Wrong Result Calculation
• #182: Trap Return Handling Violation - mstatus’ MIE
• #185: Debug Mode Violation - Exceptions Update CSRs
• #438: Illegal Instruction Exception not Raised - URET
• #439: Illegal Instruction Exception Raised Incorrectly - C.EBREAK
• #440: Illegal Instruction Exception Raised Incorrectly - CSRs
• #441: Illegal Instruction Exception Raised Incorrectly – MRET
• #442: Illegal Instruction Exception Raised Incorrectly – FENCE
• #443: Incorrect DCSR value read/ written
• #509: Core executes wrong instruction



  

Results – RocketCore
 

• 5 stages, 64-bit
• Chisel
• Mostly in-order
• Long latency 

instruction DIV 
completes out of 
order



  

Results – RocketCore
 

• github.com/chipsalliance/rocket-chip/issues
• #1752: DIV result not written back to register file
• #1757: JAL and JALR jump instructions store different return PC – instruction fetch unit 

responsible to prevent this issue
• #1861: replay of illegal opcode instruction or instruction with fetch exception
• #1868: undocumented non-standard instruction (opcode 32'h30500073) detected - 

CEASE
• #1868: presence of non-standard instruction (opcode 32'h30500073) not declared in misa 

register
• #1949: access to non-existent CSR does not raise illegal instruction exception – open
• #2022: DRET instruction outside of Debug mode does not cause illegal exception 
• #2043: DRET instruction illegal exception tied to M mode status



  

Summary
 

• RISC-V pre-silicon functional verification is challenging
• Complex implementations – pipeline, performance optimizations
• Many configurations and custom extensions possible
• Many cores – open-source, in-house, third-party

• Formal verification using automated solution allows the user to:
– Prove that the core complies with RISC-V ISA
– Detect all corner-case bugs, including in custom extensions
– Identify security weaknesses, vulnerabilities, and hardware Trojans
– Applicable during core’s RTL development and IP integration into a SoC



  

OneSpin: Assuring IC Integrity
 

OneSpin provides certified
IC Integrity 

Verification Solutions
to develop 

functionally correct, 
safe, secure, and trusted 

integrated circuits


