
Transaction Equivalence Formal 
Check(DPV) in Video 

Algorithm/FPU/AI Area
Minqi Bao,Enflame,Shanghai,China(bob.bao@enflame-tech.com)

Optional Company 
Logo

(show on Title Slide 
ONLY)



OUTLINE

• Introduction
• Methodology

• General flow
• Video algorithm use model and results
• Floating point computation use model and results
• AI computation use model and results
• Debugging method



Introduction

All these pain points drive us to find a more efficient verification methodology. In 
this paper, we will use “DPV”, a transaction equivalence based formal tool, to gain 
more than 10X efficiency verification improvement in datapath verification. By 
transaction, we mean the following:

 A transaction consists of Inputs, Input State (optional), State change Outputs, 
Output State (optional).

 A transaction can be combinational, sequential overlapping / pipelined, or 
sequential non-overlapping.



General flow

DPV general flow is very simple and can be divided into 
four parts

a. Compile C model – gnu compatible
b. Compile RTL – vcs compatible
c. Compose and mapping – compose automatically done 

by tool and mapping needs manual work usually
d. Set constrain(constraints) and checkers(lemmas) and 

prove them by formal engines

Methodology



Video algorithm use model and results

Original RTL

Methodology

C

Optimized RTL structure for DPV

Method Time to uncover this bug

Simulation Days or weeks depends on specific pattern
DPV (transactional equivalence) 3 hours without any pattern effort

Corner bug found with transactional equivalence:

The maximum of the gradient is represented by a 11bits 
signal. After updated, the gradient operator is changed and 
the maximum of the gradient should be a 13bits signal while it 
keeps 11bits in design which caused the inconsistent with 
C++ golden



Floating point computation use model and results

In FPU side, we choose a FP64 FMA with in-house radix booth encoding. It needs at least 2 weeks for all UVM testbench 
and coverage points setup while it just requires one-hour setup for transaction equivalence exhaustive verification.

Methodology



AI computation use model and results

Methodology

Scenario Results

Matrix 8 x 8 proved in seconds

Matrix 32 x 32 proved in minutes

Matrix 64 x 64 proved in a few hours

Matrix 128 x 128 proved in 30 hours



Debugging method

Methodology


