Micron Confidential

DESIGN AND VERZIFIOCAZTION""
BV (accellera Aicron

SHANGHAI | MAY 26, 2021 SYSTEMS INITIATIVE

A Systematic IP Verification Solution of Complex
Memory Management for Storage SOC

Jinsong Liu, jinsong@micron.com
Shuhui Wang, wangshuhui@micron.com

!
i
it
L]
I

n
(XXX
((”’:N

Micron Confidential

Micron Confidential

2021
Data Struct Requirement BYETN (acoellerd)

CE AND EXHIBITION

HHHHHHHH | MAY 28, 2021 SYSTEMS INITIATIVE

Command

Header
Bufl Addr
Buf2Addr

Buf3Addr
32-bit

DataBufl Addr
DataBuf2 Addr

o Alignment — 8/16/32/64/128-bit aligned.

o Entry Width — 8/16/32/64/128-bit or User-defined
transaction.

o Size — User-defined.
o Locality — Nearby/Broad.

Micron Confidential

Features and Benefits BV a@
v Provide system memories modeling for complex SOC.

v' Address mapping of system memories can be configurable.

v Support different SOC buses like APB, AHB, AXI or other internal system bus.

v Allocate memory with different requirements of alignment / width / size / locality / mode.

v’ Load and store user-defined transaction.

v' Collect functional coverage to make sure all legal memory regions are fully covered.

v Support debug mode. Allocation and deallocation, load and store operations can be
dumped.

Micron Confidential

Micron Confidential

2021

uvm_mem_mam Extension BVECH atcellrd)

SHANGHAI | MAY 26, 2021 SYSTEMS INITIATIVE
uvm_mem_mam supports:
o Allocation Alignment — Byte aligned.
o Allocation Mode - Thrifty.
o Allocation Locality — Nearby.
o Read and Write — Data struct: uvm_reg_data

Extension from uvm_mem_mam:

v" Allocation Alignment — 8/16/32/64/128-bit aligned.

v" Allocation Mode - Thrifty and Greedy.

v' Allocation Locality -- Nearby and Broad.

v' Read and Write — Data struct: User-defined transaction and 8/16/32/64/128-bit entry width.

Micron Confidential

Micron Confidential

.
Implementation — Configuration | DVETITT (accellera

Memory Manager Configuration API

AP Prototyping

bit configure (smm_cfg cfg_p)

Configure system memory manager, this API is usually called initially after the

environment has been built. (For example, call the API in connect_phase() in IP

environment.)

Memory Manager Configuration Data Struct
Field

start_offset The start address of system memory address space that is to be allocated.

end_offset The end address of system memory address space that is to be allocated.

alloc_mode Allocation mode, by default this field is randomized between the below modes:

GREEDY: Allocate un-allocated memory region with priority.

THRIFTY: Allocate just released memory region with priority.

locality Locality for memory allocation, by default this field is randomized between the below
modes:

BROAD: Randomly allocate regions throughout system memory.

NEARBY: Allocate regions adjacent to allocated regions with priority.
Micron Confidential

Micron Confidential

Implementation — Configuration Il

Example: Memory Manager Configuration

function void connect phase(uvm_phase phase);
smm_cfg cfg v;

system_mem_manager smm;

super.connect phase(phase);
//Create a singleton memory manager.

smm = system_mem_manager::get();

//Configure address space for system memory.

cfg v=smm_cfg::itype id::create(“cfg_v”);

cfg_v.randomize() with {start offset==32"h0000 0000;
end offset = 32’hFFFF FFFF;};

smm.configure(cfg v);

//Pass shadow memory to memory manger.

smm.mem_h = mbp_slave agent[0].slave_mem;

endfunction

Micron Confidential

2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

SHANGHAI | MAY 26, 2021

accellera

SYSTEMS INITIATIVE

2021
Implementation — Allocation/Deallocation |~ BV < accellera

Memory Allocation/Deallocation APls

API Prototyping Descriptions

bit alloc_mem (input int Allocate memory segments with the specified size and policy (alignment, allocation strategy
byte_size, input and etc.), and the returned start_addr is the starting address of the allocated memory.
mem_manager_policy policy,
output bit[31:0] start_addr
oljne ==t lolengpi=lan (g elfinolii€R 01 H De-allocate memory segments which have been allocated before. Note that the start address
start_addr) should be the same as that of the corresponding alloc_mem function and all the allocated
memory segment will be released.

Return O for failures

Return O for failures

ol feislsiasl gl (ercie ke Allocate one memory segment with specified size and starting address. The memory segment
o) air == et el s lgn sl le[f 1 can’t be allocated unless it is released. This API can also be used to pre-allocate some
memory regions initially which can’t be allocated. For example, address maps for block
registers need to be reserved.

Return O for failures. (i.e. The memory segment has been allocated before)

Micron Confidential

Micron Confidential

2021

DESIGN AND VERIFICATION™

Implementation — Allocation/Deallocation || Dy

SHANGHAI | MAY 26, 2021

Memory Allocation Policy Data Struct

Specify the minimum memory offset that can be allocated. This field and the below
alloc_max_offset can be used to define a sub-region to be allocated.
Specify the maximum memory offset that can be allocated.
addr_align Allocation address alignment:
BYTE_ALIGN: allocated address should be byte aligned
WORD_ALIGN: allocated address should be 2-byte aligned
DWORD_ALIGN: allocated address should be 4-byte aligned

QWORD_ALIGN: allocated address should be 8-byte aligned
EWORD_ALIGN: allocated address should be 16-byte aligned

Micron Confidential

SYSTEMS INITIATIVE

Micron Confidential

Implementation — Allocation/Deallocation |l

Example: Memory Allocation/Deallocation

2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

SHANGHAI | MAY 26, 2021

Example: Memory Reservation

accellera

SYSTEMS INITIATIVE

task body();
system mem manager smm;
mem_manager policy mmp;
bit [31:0] addr;

mmp = new();

smm = system_memory_manager::get();

mmp.addr_align = ;
mmp.alloc_min_offset = ;
mmp.alloc_max_offset = ;
assert (smm.alloc_mem(4096, mmp, addr);

‘uvm_info(get_name(), $sformatf(, addr),

smm.dealloc_mem(addr);
‘uvm_info(get_name(), $sformatf(, addr),
endtask

function reserve _csr_ mem_region();
smm.reserve_mem(

endfunction

Micron Confidential

Micron Confidential

Implementation — Load and Store APls | DVCON ,a@

SHANGHAI | MAY 26, 2021 SYSTEMS INITIATIVE

Load and Store User-defined Transaction

bit store_usr_data(input Backdoor store data with user-defined format (extended from base_usr_data) into specified
bit[31:0] start_addr, input memory address.
base_usr_data usr_data)

Return O for failures

bit load_usr_data(input Backdoor load data with user-defined format (extended from base_usr_data) from specified
bit[31:0] start_addr, inout memory address
base_usr_data usr_data)

Return O for failures

Virtual Function in Base Class of User-defined
Virtual Function

int get_byte_size(); This function must be extended in child classes to define the byte size of user defined data.

void unpack_bytes(input This function must be extended in child classes to convert input byte array into user-
bit[7:0] byte_in][)); defined data. The input byte array size should match what is defined in the above
get_byte_size() function. This function will be called by load_usr_data API.

\ellel ezl oh =i (ot et o1k A0 This function must be extended in child classes to convert user-defined data into byte array.
bytes_out[]); The byte array size is also defined in the above get_byte_size() function. This function will
be called by store_usr_data API.

Micron Confidential

Micron Confidential

2021

DESIGN AND VERIFICATION™

Implementation — Load and Store APIs |l DV

SHANGHAI | MAY 26, 2021

Example: User-defined Transaction Extends From Base_User_Data

accellera

SYSTEMS INITIATIVE

class dec bufferlist txn extends base usr data;

rand Dec_BufferList DWO0 dwO;
rand Dec BufferList DW1 dwl;

‘uvm_object utils begin(dec_bufferlist txn)
‘uvm_field int(dwO,);
‘uvm_field int(dwl,);

‘uvm_object utils _end

function new(string name =);
super.new(name);

endfunction

// This function is mandatory to be implemented to specify the byte size of
this txn.

function int get byte size();
return §;

endfunction

//This function will be called by load usr data().
function void unpack bytes(input bit[7:0] byte in[]);
assert(byte_in.size() == get_byte size()); //check input array size
dwO={byte in[3], byte in[2], byte in[1], byte in[0]};
dwl={byte in[7], byte in[6], byte in[5], byte in[4]};

endfunction

//This function will be called by store usr data().

function void pack bytes(output bit[7:0] bytes out[]);

bytes out = new[get byte size()]; //create an array with expected size.
{bytes_out[3], bytes out[2], bytes out[1], bytes out[0]} = dwO0;
{bytes_out[7], bytes_out[6], bytes out[5], bytes out[4]} = dwl;

endfunction

function string convert2string();
string s;
s = { s, $sformatf(" \n", dw0) };
s={s, $sformatf(" \n", dwl)}
return s;

endfunction

endclass

Micron Confidential

Micron Confidential

Implementation — Load and Store APlIs || DVCOIN a@

SHANGHAI | MAY 26, 2021 SYSTEMS INITIATIVE

Example: Store User-defined Transaction

rand dec_bufferlist txn buf h;
bit [31:0] cwl_addr = 0;

bit suc;

buf h =new();

if (!buf_h.randomize()) 'uvm error(get name(),)

suc = smm.store_usr_data(cwl addr, buf h);

if (suc ==0) 'uvm_error(get name(),)

Micron Confidential

Micron Confidential

Implementation — Load and Store APIs |V

Example: Load User-defined Transaction

2021

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

SHANGHAI | MAY 26, 2021

accellera

SYSTEMS INITIATIVE

function dec bufferlist txn load buf list(bit [31:0] addr);
bit suc;
base usr data base usr data h;
dec_bufferlist txn buf h;

buf h = new();

//1t is mandatory to pass a handle with “base usr data” type instead of its
extended type as the 2nd argument of load usr_data().

//1t is recommended to $cast the extended item to a “base usr_data” handle
and pass it to the load usr_data() function. After calling load usr_data(),
$cast the “base usr_data” handle back to the extended item.

if (!Scast(base_usr_data_h, buf h))

‘uvm_error(get_name(),)

suc = smm.load usr data(addr, base usr data h);

if (!Scast(buf h, base usr data h))

‘uvm_error(get_name(),

if (suc ==0)

‘uvm_error(get name(),

return buf h;

endfunction

Micron Confidential

