
Best Practice Coding Assertion IP (AIP) to Get
More Predictable Results

SJ Wu, Leon Yin
Synopsys

Overview on Assertion IP (AIP) of Interface

• Interface Types:
• Standard interface
• In-house defined interface

• Reusability and Extensibility of Interface
• AIP is worthwhile investment

• AIP used in both simulation and formal
• Without proper principles to follow, the created AIP will not be suitable for

both simulation and formal at the same time

How to implement such reusable AIPs is essential for
ensuring comprehensive checkers that can be reused everywhere.

Three phases of AIP development

1. Specification review phase
1. What should become an assertion checkers?
2. How to divide-and-conquer multi-channel interfaces so that a

predictable schedule can be created.
2. Coding phase

1. Several coding guidelines are listed
2. Some formal skills to reduce the complexity in formal verification

3. Validation phase
1. Fault analysis flow is deployed to reach a strong confidence

PHASE-I: SPECIFICATION REVIEW
A. What a standard interface should have

1) Channels
2) Mandatory components:

1) optional and mandatory signals should be clearly documented.
2) The assertions created for optional signals should also leave a parameter

for user to switch on and off.
3) Cross channels interaction
4) Exceptions: undocumented failure valuable products from formal verification

Table I. AMBA AXI4 AIP implementation specification

PHASE-I: SPECIFICATION REVIEW
B. Identify the targets to divide and conquer with Table I

1) Create the packet:
1) Packet attributes  Struct

2) Create common data structure:
3) Function:

Quick example:
Calculating the Wdata strobe

according to data beat and
address for AXI4 write transaction

4) Channels:

PHASE-II: CODING/IMPLEMENTATION

A. Define reusable enum and structure:
B. Define important indicators
C. Parameterization
D. Coding for different roles
E. Coding for both simulation and formal
F. Avoid unconcious over-constraints
G. Coding optimization for formal

1. Case splitting on AIP:
2. Symbolic abstraction on AIP:

PHASE-II: CODING/IMPLEMENTATION
A. Define reusable enum and structure:

• Instead of connecting a specific signal, the sample struct is used to pack
signals

• Below example shows the struct of AR channel for AXI4. This is an extensible
approach to any channels.

PHASE-II: CODING/IMPLEMENTATION
B. Define important indicators

1. Serve as the key points of debugging.
2. These events are served as the helpful indicators to identify the problem.

Example: Important indicators on AXI4 AIP

PHASE-II: CODING/IMPLEMENTATION
C. Parameterization

1. Parameterization commonly comes to different configuration or specification
requirements

2. AIP can also design a parameter to switch on/off an incomplete function
which proactively prevents the problems from hiding with hard codes during
the early development

PHASE-II: CODING/IMPLEMENTATION
D. Coding for Role changing

1. Four usage models in AIPs
as shown

2. The role changing between
assumptions and
assertions.

3. Leverage the benefit of this
coding style to assert or
assume the property
according to the required
role.

PHASE-II: CODING/IMPLEMENTATION
E. Coding for both simulation and formal

• Although symbolic abstraction is a powerful approach in formal verification, we
still must provide the general version of a checker.

PHASE-II: CODING/IMPLEMENTATION
F. Avoid unconscious over-constraints

• Over-constraints limit the state space of a testbench.
• It implies bug can lurk inside.

Roles Assume Assert

MASTER P1 P3

SLAVE P3 P1

CONSTRAINT P1 P3 NA

CHECKER NA P1 P3

Reviewing the table as a proper way to avoid unintentional constraints on AIP

Properties: P1; P2; P3;

PHASE-II: CODING/IMPLEMENTATION
G. Coding optimization for formal

1. Case splitting on AIP: by enumerating all the cases in multiple assertions,
convergence becomes easier to get.

2. Symbolic abstraction on AIP: symbolic abstraction uses one symbol value to
analyze if there is any possible violated case exists.

Index Without Case Splitting With Case Splitting

Proof time
One write data strobe check 8 splitted write data

strobe checks

Inconclusive after 24hr All proven in 1hr.

Symbol Helpful for What
rid/bid Check if this id is valid

wdata beat Check write strobe of one arbitrary beat

some candidate symbols applicable for AXI4

PHASE-III VALIDATION

• 2 testbenches to validate AIP:
• back-to-back
• leveraging the existed high-quality AIP

CONCLUSION

1. Three systematical phases for building the AIP from scratch:
1. Phase-I helped to schedule out development milestones
2. Phase-II listed out the coding rules for both simulation and formal
3. Phase-III proposed a approach to boost the AIP quality with the fault

analysis flow

2. This development flow is already rolled out successfully in Synopsys IP team
1. It makes AIPs development time move faster
2. 16 issues were found on a newly developed internal interface AIP without

impacting IP team AIP users
3. the iterations between AIP developers and users are greatly reduced

Thanks!

