
Unified Automation
Verification Management

Approach
Liu Wenbo, Xi'an R&D Center, Inspur, Xi’an, China

(liuwenbo03@inspur.com)
Tian Libo, Xi'an R&D Center, Inspur, Xi’an, China (tianlibo@inspur.com)

 Shao Haibo, Xi'an R&D Center, Inspur, Xi’an, China
(shaohaibo@inspur.com)

1

Introduction

• Overview of the main contents: What does this paper talk
about?

• Overview of background : Why do this work?
• Unified Verification Management Tool

• Basic steps for manage verification process
• The basic functions of the tool

• Reusable testcase build method
• How to implement this method
• Show some sample code

The Main Contents of This Paper

• This paper introduces a verification management tool that
unifies the process construction of front-end verification,
prototype verification and post-silicon validation in order to
free verification engineers from the complicated process
development and enable them to focus on the chip function
itself so as to better complete the most important work. It
realizes the functions of test case management and automatic
execution of test cases.

3

The Main Contents of This Paper

• Present a method of reusing test cases between front-end
verification, prototype verification and post-silicon. The use of
test case reuse method can significantly improve the efficiency
of use case management in different verification stages and
reduce the workload of test case development on the basis of
the verification management tools described in this paper.

4

Background

• SoC technology has made great progress with the progress of
semiconductor manufacturing technology. The size and
complexity of chips have increased exponentially.

• The current verification of SoC chips is facing more difficulties
and challenges, and the verification technology of SoC chips
based on FPGA is one of the important ways to solve this
problem.

• FPGA can accelerate verification and truly simulate the working
state of the actual SoC chip, so it can make up for the defects
in the simulation phase, thus greatly improving the success rate
of taping.

5

Background

• The prototype verification and post-silicon verification of the
chip design process can effectively ensure the quality of the
chip.

• Improving the work efficiency and automation of these two
stages can free verification engineers from the complicated
process development and enable them to focus on the chip
function itself so as to better complete the most important work.

• Considering that there are basically the same requirements for
test case management and regression testing process in
different stages of verification, a verification management tool
is developed.

6

Background

• This paper focuses on the regression test automation.
• Introduces this verification management tool, which unifies the

process of front-end verification, prototype verification and
post-silicon validation.

• It realizes the functions of test case management and automatic
execution of test cases.

7

Background

• Because the prototype verification and post-silicon verification
sometimes are very consistent with the front-end verification in
the test scenario, a test case reuse design method is
developed from the point of view of increasing the reusability of
test cases.

• This paper will introduce some designs to improve reusability in
the front-end verification process based on a unified method.
The front-end test cases designed based on this method can
be reused in the prototype verification and post-silicon
verification phase. After all, it can significantly save the time of
verification use case development.

8

Unified Verification Management Tool

• It uses a unified verification management tool to deal with
different stages of verification work.

• Based on this method, the management and automatic
execution of test cases can be realized.

• This method divides the execution process of test cases into
three stages: verification preparation, verification execution and
post-verification processing, which has a high degree of
expansibility.

• Personalized processes and functions can be flexibly
expanded for different stages of different test cases.

9

Unified Verification Management Tool

• The detail include:
• Define the attribute information of each test case
• Automatically generating the template and the configuration file

of the test case according to these attribute information.
• Build a visual operating environment, and uniformly managing

the test cases of multiple modules.
• Complete automatic regression testing, analyze the result log,

and generate verification report.

10

Unified Verification Management Tool

11

Unified Verification Management Tool

GL_SRC_DIR = $WORKAREAD/verify_repo/soc
GL_HVP_DIR = $WORKAREAD/verify_repo/etc/vplan
GL_SIM_DIR = $WORKAREAD/playground/toolrun/simulation/soc

12

Unified Verification Management Tool

plan CPU_VPLAN;
attribute string owner = “Zhang San”;
attribute string module_name = “cpu”;
feature VO_CPU_IRAM_TEST;
description = “test mem size”
 measure test_status, test_status.percent.PASSED test_status;
 source = “cpu_iram_size_test”
 endmeasure
endfeature

13

Unified Verification Management Tool

14

Unified Verification Management Tool

15

Unified Verification Management Tool
pre_cfg:
target_name:
 - target_name: example_target_name
pre_cmd_list:
 - pre_cmd_list:
- example_pre_cmd1
- $(sim_dir)/example_pre_cmd2
run_cfg:
run_opts:
 - run_opts: “example_opt1 example_opt2”
post_cfg:
post_cmd_list:
 - post_cmd_list:
 - $(sim_dir)/example_post_cmd1
 - example_post_cmd 16

Unified Verification Management Tool

echo “pre-processing”
module load python/3.7.5
cp –fr /home/cadadm/scripts/* /nfs/simulation/example
ln –sf /home/cadadm/etc/*.sh /nfs/simulation/example
echo “runing”
python ./run_test.py
echo “post-processing
perl ./check_result.pl

17

Unified Verification Management Tool

18

Unified Verification Management Tool

19

Unified Verification Management Tool

• Users can generate the results of all
test cases through the UI, including
the HVP, maintainer, run time, results
and other information.

• According to the log information,
users can draw the bar chart, pie
chart to show the proportion of
different priorities, and the test pass
ratio of different modules, and
compare the results of each
regression curve. 20

Reusable testcase build method

• This paper intends give a method to improve the reusability of
test cases in view of the consistency of verification scenarios in
the three stages of front-end verification, prototype verification
and post-silicon validation.

• This method can complete most of the development of
prototype verification test cases during the front-end
verification, and the test cases developed at this stage will be
reused in the post-silicon verification phase.

• This method can significantly reduce the workload of test case
development in prototype verification and post-silicon
validation phase. 21

Reusable testcase build method

• We need to find something in common among the verification
environments of front-end verification, prototype verification
and post-silicon verification by considering the reusability of
test cases.

• Prototype & post_silicon validation:
• Send the test incentive to the DUT through the real interface.
• Load FW from external storage and executes it.

• Front-end verification:
• Simulate the incentive process, such as issuing various types of

control/data plane configuration according to the software flow.

22

Reusable testcase build method

• In this process, the incentive content of front-end verification is
highly consistent with prototype verification and post-silicon
verification.

• We can unify the implementation methods of different
verification stages in this process, to achieve the reuse of test
cases in different verification stages.

23

Reusable testcase build method

• There are many ways to realize this stimulation process. C
language is used to write test incentives in front-end
verification from the point of view of maintainability and
expansibility.

• The method of DPI provided by SystemVerilog language is
adopted to combine the test incentives written in C language
with the verification platform written by SystemVerilog.

• The following is a simple example to illustrate this design idea
and the basic implementation method. The code example can
be seen as follows.

24

Reusable testcase build method

SystemVerilog Code:
import “DPI-C” context task
dpi_c_thread();
class dpi_test extends base_test;
 …
task

dpi_test::run_phase(uvm_phase
phase);

…
dpi_c_thread();
…

endtask : run_phase
endclass

C Code:
void dpi_c_thread(){
 config()
}

Void config(){
 reg_write(addr_1, value_1)
 …
 reg_write(addr_n, value_n)
}

25

Reusable testcase build method

• The basic function task, method written by SystemVerilog is
also called using DPI in dpi_c_thread as shown below.

export “DPI-C” reg_write = task reg_write(int addr, int
value);

task reg_write (int addr, int value);
 /*configuration procedure*/
 …
endtask

26

Conclusion

• This paper implements a unified verification management tool.
It can not only improve the work efficiency, but also reduce the
repeated investment in verification management in different
verification stages.

• And this paper also intends give a method to improve the
reusability of test cases. It can reduce the workload of test
case development for verification engineers at different
verification stages.

• We will consider how to further improve the methods and tools
of cooperation between different verification stages based on
the view that unifying the tools and methods of different
verification stages can reduce repetitive investment and
improve work efficiency. 27

Thanks!

28

